论文标题

图形的最大奇数诱导子图有关其色数

Maximum odd induced subgraph of a graph concerning its chromatic number

论文作者

Wang, Tao, Wu, Baoyindureng

论文摘要

令$ f_ {o}(g)$为$ g $的奇数子图的最大顺序。在1992年,斯科特(Scott)提出了一个猜想,即$ f_ {o}(g)\ geq \ frac {n} {n} {2χ(g)} $对于$ g $ of Order $ n $而不孤立的顶点,其中$χ(g)$是$ g $的$ g $。在本文中,我们表明猜想对于两部分图不是正确的,但对于所有界限图都是正确的。此外,我们还在1997年反驳了贝尔曼,王和沃戈的猜想,该猜想指出$ f_ {o}(g)\ geq 2 \ lfloor \ lfloor \ frac {n} {4} {4} \ rfloor $对于连接的$ g $ of订单$ n $。 Scott的猜想是针对具有至少3个色度的图表开放的。

Let $f_{o}(G)$ be the maximum order of an odd induced subgraph of $G$. In 1992, Scott proposed a conjecture that $f_{o}(G)\geq \frac {n} {2χ(G)}$ for a graph $G$ of order $n$ without isolated vertices, where $χ(G)$ is the chromatic number of $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang and Wargo in 1997, which states that $f_{o}(G)\geq 2\lfloor\frac {n} {4}\rfloor$ for a connected graph $G$ of order $n$. Scott's conjecture is open for a graph with chromatic number at least 3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源