论文标题
基于伴随的粒子强迫重建和不确定性定量
Adjoint-based Particle Forcing Reconstruction and Uncertainty Quantification
论文作者
论文摘要
粒子在湍流环境中的强迫会影响与许多涉及粒子流相互作用的基本应用有关的动态特性。当前的研究探讨了在已知环境速度场的假设下,探索了单向耦合被动颗粒的强迫。当有关颗粒位置的测量值但稀疏时,对强迫的直接评估是棘手的。然而,可以使用基于伴随的数据同化来确定有限尺寸颗粒的强迫。这个反问题是通过优化框架来提出的,其中成本函数定义为测量的粒子位置和预测的粒子位置之间的差异。相对于强迫的成本函数的梯度可以根据伴随动力学计算。当测量受到高斯噪声的约束时,可以使用汉密尔顿蒙特卡洛来绘制强迫概率分布中的样品。该算法在Arnold-Beltrami-Childress的流以及同质各向同性湍流中进行了测试。结果表明,只能针对1到5之间的粒子雷诺数准确确定强迫,其中大多数雷诺数沿粒子轨迹落入其中。
The forcing of particles in turbulent environments influences dynamical properties pertinent to many fundamental applications involving particle-flow interactions. Current study explores the determination of forcing for one-way coupled passive particles, under the assumption that the ambient velocity fields are known. When measurements regarding particle locations are available but sparse, direct evaluation of the forcing is intractable. Nevertheless, the forcing for finite-size particles can be determined using adjoint-based data assimilation. This inverse problem is formulated with the framework of optimization, where the cost function is defined as the difference between the measured and predicted particle locations. The gradient of the cost function, with respect to the forcing can be calculated from the adjoint dynamics. When measurements are subject to Gaussian noise, samples within the probability distribution of the forcing can be drawn using Hamiltonian Monte Carlo. The algorithm is tested in the Arnold-Beltrami-Childress flow as well as the homogeneous isotropic turbulence. Results demonstrate that the forcing can only be determined accurately for particle Reynolds number between 1 and 5, where the majority of Reynolds number history along the particle trajectory falls in.