论文标题

用于辐射转移方程的离散级弱彩色方法

A discrete-ordinate weak Galerkin method for radiative transfer equation

论文作者

Singh, Maneesh Kumar

论文摘要

这篇研究文章讨论了基于弱卷素有限元方法的辐射传递方程的数值解。我们通过离散分级方法将角变量离散。然后,使用弱的盖金方法近似产生的半二氧化双曲线系统。设计了提出的数值方法的稳定性结果。在适当的规范下建立了先验错误分析。为了检查理论结果,进行了数值实验。

This research article discusses a numerical solution of the radiative transfer equation based on the weak Galerkin finite element method. We discretize the angular variable by means of the discrete-ordinate method. Then the resulting semi-discrete hyperbolic system is approximated using the weak Galerkin method. The stability result for the proposed numerical method is devised. A priori error analysis is established under the suitable norm. In order to examine the theoretical results, numerical experiments are carried out.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源