论文标题

工程设计的数据有效替代建模:无合奏批处理模式深度积极学习回归

Data efficient surrogate modeling for engineering design: Ensemble-free batch mode deep active learning for regression

论文作者

Vardhan, Harsh, Timalsina, Umesh, Volgyesi, Peter, Sztipanovits, Janos

论文摘要

在计算机辅助工程设计优化问题中,涉及臭名昭著的复杂且耗时的模拟器,普遍的方法是用数据驱动的替代物代替这些模拟,以便宜得多的成本近似模拟器的行为。创建廉价数据驱动的替代物的主要挑战是使用这些计算昂贵的数值模拟生成大量数据。在这种情况下,已经使用了主动学习方法(AL)方法,这些方法试图学习输入行为,同时标记可能较少的样本。贝叶斯框架的当前趋势主要由需要训练的学习模型集合的贝叶斯框架主导,该模型使替代培训在计算上乏味,如果基础学习模型是深神经网络(DNNS)。但是,即使对于非常高的维度问题,DNN具有出色的能力,可以学习高度非线性和复杂的关系。为了利用深层网络的出色学习能力,并避免贝叶斯范式的计算复杂性,在这项工作中,我们提出了一种简单且可扩展的方法,用于积极学习,以学生教师的方式工作,以培训代理模型。通过使用这种提出的方​​法,我们能够达到与其他基线相同的替代精度,例如DBAL和Monte Carlo采样,最多少40%。我们在多个用例上对此方法进行了经验评估,包括三个不同的工程设计域:有限元分析,计算流体动力学和螺旋桨设计。

In a computer-aided engineering design optimization problem that involves notoriously complex and time-consuming simulator, the prevalent approach is to replace these simulations with a data-driven surrogate that approximates the simulator's behavior at a much cheaper cost. The main challenge in creating an inexpensive data-driven surrogate is the generation of a sheer number of data using these computationally expensive numerical simulations. In such cases, Active Learning (AL) methods have been used that attempt to learn an input--output behavior while labeling the fewest samples possible. The current trend in AL for a regression problem is dominated by the Bayesian framework that needs training an ensemble of learning models that makes surrogate training computationally tedious if the underlying learning model is Deep Neural Networks (DNNs). However, DNNs have an excellent capability to learn highly nonlinear and complex relationships even for a very high dimensional problem. To leverage the excellent learning capability of deep networks along with avoiding the computational complexity of the Bayesian paradigm, in this work we propose a simple and scalable approach for active learning that works in a student-teacher manner to train a surrogate model. By using this proposed approach, we are able to achieve the same level of surrogate accuracy as the other baselines like DBAL and Monte Carlo sampling with up to 40 % fewer samples. We empirically evaluated this method on multiple use cases including three different engineering design domains:finite element analysis, computational fluid dynamics, and propeller design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源