论文标题

可溶剂组直径直径的上限

Upper Bounds For The Diameter Of A Direct Power Of Solvable Groups

论文作者

Azad, Azizollah, Karimi, Nasim

论文摘要

令G为具有生成集的有限组A。通过G相对于A(对称的)直径相对于A,我们是指在g中的最大值(一个逆)a表示G.by的最短单词的长度的最大值,G.by(对称)的直径(对称)g的最大值表示(对称)的(对称)比G. g-的最大值。大于或等于1和有限的非亚伯溶解组G,我们在对称直径和G功率n的直径和直径上找到了上限,相对于n的多项式生长。

Let G be a finite group with a generating set A. By the (symmetric) diameter of G with respect to A we mean the maximum over g in G of the length of the shortest word in (A union A inverse)A expressing g.By the (symmetric) diameter of G we mean the maximum of (symmetric) diameter over all generating sets of G. Let n greater than or equal to 1, by G power n we mean the n-th direct power of G. For n greater than or equal to 1 and finite non-abelian solvable group G we find an upper bound, growing polynomially with respect to n, for the symmetric diameter and the diameter of G power n.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源