论文标题
极端树的最大SOMBOR指数具有给定度序列
Extremal trees for Maximum Sombor index with given degree sequence
论文作者
论文摘要
令$ g =(v,e)$是一个简单的图形,带有顶点套装$ v $,edge set $ e $。图$ g $的SOMBOR索引是基于学位的拓扑索引,定义为$$ so(g)= \ sum_ {uv \ in E} \ sqrt {d(u)^2+d(v)^2},$ d(x)$是$ x \ in v $ x $ x = u,v $ x = u,v $ x = u,v $ d(x)$。在本文中,我们以给定的度序列最大化SOMBOR指数的极端树木表征。
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. The Sombor index of the graph $G$ is a degree-based topological index, defined as $$SO(G)=\sum_{uv \in E}\sqrt{d(u)^2+d(v)^2},$$ in which $d(x)$ is the degree of the vertex $x \in V$ for $x=u, v$. In this paper, we characterize the extremal trees with a given degree sequence that maximizes the Sombor index.