论文标题

部分可观测时空混沌系统的无模型预测

Weak-lensing mass bias in merging galaxy clusters

论文作者

Lee, Wonki, Cha, Sangjun, Jee, M. James, Nagai, Daisuke, King, Lindsay, ZuHone, John, Chadayammuri, Urmila, Felix, Sharon, Finner, Kyle

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Although weak lensing (WL) is a powerful method to estimate a galaxy cluster mass without any dynamical assumptions, a model bias can arise when the cluster density profile departs from the assumed model profile. In a merging system, the bias is expected to become most severe because the constituent halos undergo significant structural changes. In this study, we investigate WL mass bias in binary cluster mergers using a suite of idealized hydrodynamical simulations. Realistic WL shear catalogs are generated by matching the source galaxy properties, such as intrinsic shape dispersion, measurement noise, source densities, etc., to those from Subaru and {\it Hubble Space Telescope} observations. We find that, with the typical mass-concentration ($M$-$c$) relation and the Navarro-Frenk-White (NFW) profile, the halo mass bias depends on the time since the first pericenter passage and increases with the mass of the companion cluster. The time evolution of the mass bias is similar to that of the concentration, indicating that, to first order, the mass bias is modulated by the concentration change. For a collision between two $\sim10^{15}~M_{\odot}$ clusters, the maximum bias amounts to $\sim60\%$. This suggests that previous WL studies may have significantly overestimated the mass of the clusters in some of the most massive mergers. Finally, we apply our results to three merger cases: Abell 2034, MACS J1752.0+4440, and ZwCl 1856.8+6616, and report their mass biases at the observed epoch, as well as their pre-merger masses, utilizing their merger shock locations as tracers of the merger phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源