论文标题
瑟斯顿脊柱的模棱两可的变形缩回
An equivariant deformation retraction of the Thurston spine
论文作者
论文摘要
本文表明,映射群 - 等级的映射 - 等级变形缩回封闭的,可定向的表面的Teichmüller空间上的尺寸相等,等于映射类组的虚拟共同体学维度。变形缩回的图像包含在Thurston -Thurston Spine首先描述的CW复合物中。 Thurston脊柱是Teichmüller空间中的一组点,对应于双曲线表面,最短的测量学(收缩)将表面切成多边形。
This paper shows that there is a mapping class group-equivariant deformation retraction of the Teichmüller space of a closed, orientable surface onto a cell complex of dimension equal to the virtual cohomological dimension of the mapping class group. The image of the deformation retraction is contained in the CW complex first described by Thurston -- the Thurston spine. The Thurston spine is the set of points in Teichmüller space corresponding to hyperbolic surfaces for which the set of shortest geodesics (the systoles) cuts the surface into polygons.