论文标题

虚拟场方法(VFM)的Fenics实施,用于非均匀性超弹性识别

FEniCS implementation of the Virtual Fields Method (VFM) for nonhomogeneous hyperelastic identification

论文作者

Deng, Jianwei, Guo, Xu, Mei, Yue, Avril, Stephane

论文摘要

在不同的临床和医学应用中,确定人体组织中材料特性的非均匀分布非常重要。这导致需要解决弹性中的反问题。与基于优化的方法相比,虚拟字段方法(VFM)是一种相当最新的反向方法,具有显着的计算效率。在这项研究中,我们旨在使用VFM确定非均匀的高弹性材料特性。我们提出了两种新型算法,RE-VFM和NO-VFM。在RE-VFM中,将固体分配在不同区域,并确定每个区域的弹性特性。在NO-VFM中,2弹性性能的分布是通过反问题完全重建的,而无需分区。由于VFM需要使用虚拟字段,我们提出了一种有效的方法来构造它们并在Fenics软件包中实现该方法。我们在几个示例上验证了所提出的方法,包括双层结构,椎板Cribosa(LC)模型和嵌入了球形包含的立方体模型。数值示例说明了RE-VFM和NO-VFM的可行性。值得注意的是,仅在5次迭代中才能准确恢复年轻模量分布的空间变化。获得的结果揭示了所提出的方法对未来临床应用的潜力,例如估计与青光眼和检测肿瘤有关的视力丧失风险。

It is of great significance to identify the nonhomogeneous distribution of material properties in human tissues for different clinical and medical applications. This leads to the requirement of solving an inverse problem in elasticity. The virtual fields method (VFM) is a rather recent inverse method with remarkable computational efficiency compared with the optimization-based methods. In this study, we aim to identify nonhomogeneous hyperelastic material properties using the VFM. We propose two novel algorithms, RE-VFM and NO-VFM. In RE-VFM, the solid is partitioned in different regions and the elastic properties of each region are determined. In NO-VFM, 2 the distribution of elastic properties is completely reconstructed through the inverse problem without partitioning the solid. As the VFM requires to use virtual fields, we proposed an efficient way to construct them and implemented the approach in the FEniCS package. We validated the proposed methods on several examples, including a bilayer structure, a lamina cribosa (LC) model and a cube model embedded with a spherical inclusion. The numerical examples illustrate the feasibility of both RE-VFM and NO-VFM. Notably, the spatial variations of the Young's modulus distribution can be recovered accurately within only 5 iterations. The obtained results reveal the potential of the proposed methods for future clinical applications such as estimating the risk of vision loss related to glaucoma and detecting tumors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源