论文标题
部分可观测时空混沌系统的无模型预测
Pathology of submeasures and $F_σ$ ideals
论文作者
论文摘要
我们解决了一些关于$ \ mathbb {n} $和$f_σ$理想的较低半连续下层之间的相互作用的现象。我们分析了屈服的病理学度,并提出了一种构建病理$f_σ$理想的方法。我们为一个问题提供了部分答案,即每个非人为高的$f_σ$理想是在随机理想之上还是至少具有Borel选择器之上的Katětov。最后,我们使用Banach空间中的序列展示了非人为$f_σ$理想的表示。
We address some phenomena about the interaction between lower semicontinuous submeasures on $\mathbb{N}$ and $F_σ$ ideals. We analyze the pathology degree of a submeasure and present a method to construct pathological $F_σ$ ideals. We give a partial answers to the question of whether every nonpathological tall $F_σ$ ideal is Katětov above the random ideal or at least has a Borel selector. Finally, we show a representation of nonpathological $F_σ$ ideals using sequences in Banach spaces.