论文标题
部分可观测时空混沌系统的无模型预测
Conformal Prediction for STL Runtime Verification
论文作者
论文摘要
我们有兴趣预测网络物理系统在操作过程中的故障。特别是,我们考虑随机系统和信号时间逻辑规格,我们要计算当前系统轨迹违反规范的概率。本文提出了两种预测性运行时验证算法,这些算法可以从当前观察到的系统轨迹中预测未来的系统状态。由于这些预测可能不是准确的,因此我们构建了通过使用共形预测来量化预测不确定性的预测区域,该预测是不确定性定量的统计工具。我们的第一种算法直接构建了一个预测区域,以使规范的满意度度量,以便我们可以以期望的信心预测规范违规。第二算法首先构建了未来系统状态的预测区域,并使用这些算法来获得预测区域以实现满意度度量。据我们所知,这些是适用于广泛使用的轨迹预测因子(例如RNN和LSTM)的预测运行时验证算法的首次正式保证,同时在计算上简单且对基础分布没有任何假设。我们提供了F-16飞机和自动驾驶汽车的数值实验。
We are interested in predicting failures of cyber-physical systems during their operation. Particularly, we consider stochastic systems and signal temporal logic specifications, and we want to calculate the probability that the current system trajectory violates the specification. The paper presents two predictive runtime verification algorithms that predict future system states from the current observed system trajectory. As these predictions may not be accurate, we construct prediction regions that quantify prediction uncertainty by using conformal prediction, a statistical tool for uncertainty quantification. Our first algorithm directly constructs a prediction region for the satisfaction measure of the specification so that we can predict specification violations with a desired confidence. The second algorithm constructs prediction regions for future system states first, and uses these to obtain a prediction region for the satisfaction measure. To the best of our knowledge, these are the first formal guarantees for a predictive runtime verification algorithm that applies to widely used trajectory predictors such as RNNs and LSTMs, while being computationally simple and making no assumptions on the underlying distribution. We present numerical experiments of an F-16 aircraft and a self-driving car.