论文标题

2D中的自相似重力动态,奇异性和批判性

Self-Similar Gravitational Dynamics, Singularities and Criticality in 2D

论文作者

Moitra, Upamanyu

论文摘要

我们启动了一项系统的研究,对在二维中连续自相似(CSS)重力动力学进行了系统的研究,这是由在较高维度的重力理论中观察到的关键现象的动机。我们认为CSS的空间是承认同一个杀伤向量(HKV)领域。对于一般的二维引力理论,与Dilaton场和麦克斯韦场耦合,我们发现连续自相似性的假设决定了Dilaton耦合到曲率的形式。某些限制产生了两种重要类别的模型,其中一个与二维目标空间弦理论密切相关,另一个是Liouville重力。仪表场显示出可导致DILATON电位强度的变化。我们考虑静态黑洞溶液,并找到具有渐近行为不常见的空间。我们将真空自相似的空间显示为静态解决方案的特殊限制。我们添加了与自相似性(包括某种半古典重力模型)一致的物质字段,并写下了为重力动力学的自主普通微分方程。基于ODES中有限时间爆炸的现象,我们认为时空奇异性在我们的模型中是通用的。我们提出了有关物质现场崩溃和奇异性的分析和数值研究的定性不同结果。我们发现有趣的暗示是类似Choptuik的缩放定律。

We initiate a systematic study of continuously self-similar (CSS) gravitational dynamics in two dimensions, motivated by critical phenomena observed in higher dimensional gravitational theories. We consider CSS spacetimes admitting a homothetic Killing vector (HKV) field. For a general two-dimensional gravitational theory coupled to a dilaton field and Maxwell field, we find that the assumption of continuous self-similarity determines the form of the dilaton coupling to the curvature. Certain limits produce two important classes of models, one of which is closely related to two-dimensional target space string theory and the other being Liouville gravity. The gauge field is shown to produce a shift in the dilaton potential strength. We consider static black hole solutions and find spacetimes with uncommon asymptotic behaviour. We show the vacuum self-similar spacetimes to be special limits of the static solutions. We add matter fields consistent with self-similarity (including a certain model of semi-classical gravity) and write down the autonomous ordinary differential equations governing the gravitational dynamics. Based on the phenomenon of finite-time blow-up in ODEs, we argue that spacetime singularities are generic in our models. We present qualitatively diverse results from analytical and numerical investigations regarding matter field collapse and singularities. We find interesting hints of a Choptuik-like scaling law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源