论文标题

Yang-Lee Edge奇异性的多政治性

Multicriticality in Yang-Lee edge singularity

论文作者

Lencsés, Máté, Miscioscia, Alessio, Mussardo, Giuseppe, Takács, Gábor

论文摘要

在本文中,我们研究了通过将其两个旋转Z2奇数算子与假想磁场耦合获得的二维三维ISING模型的非自动变形。改变了这些假想磁场的强度,并相应地调整了两个自旋Z2甚至场的耦合常数,我们在临界表面上建立了两个红外固定点的两个通用类别类别。一类对应于熟悉的杨利边缘奇点,而第二类则对应于三级版本。我们认为,这两个通用类别分别由共形非单身最小模型M(2,5)和M(2,7)控制,这得到了基于PT对称性的考虑以及Zamolodchikov的C Theorem的相应扩展,并且还使用截断的合格正式空间验证。我们的结果与先前对三级伊斯汀模型的晶格版本的数值研究一致[1]。我们还猜想了通过用假想的耦合磁场扰动共形统一模型获得的较高非独立多政治点的普遍性类别。

In this paper we study the non-unitary deformations of the two-dimensional Tricritical Ising Model obtained by coupling its two spin Z2 odd operators to imaginary magnetic fields. Varying the strengths of these imaginary magnetic fields and adjusting correspondingly the coupling constants of the two spin Z2 even fields, we establish the presence of two universality classes of infrared fixed points on the critical surface. The first class corresponds to the familiar Yang-Lee edge singularity, while the second class to its tricritical version. We argue that these two universality classes are controlled by the conformal non-unitary minimal models M(2,5) and M(2,7) respectively, which is supported by considerations based on PT symmetry and the corresponding extension of Zamolodchikov's c-theorem, and also verified numerically using the truncated conformal space approach. Our results are in agreement with a previous numerical study of the lattice version of the Tricritical Ising Model [1]. We also conjecture the classes of universality corresponding to higher non-unitary multicritical points obtained by perturbing the conformal unitary models with imaginary coupling magnetic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源