论文标题
检测离群评估者的分析方法
Analytical method for detecting outlier evaluators
论文作者
论文摘要
流行病学和医学研究通常依靠评估者来获得研究参与者的暴露或结果的测量,并且关联的有效估计取决于数据的质量。即使已提出统计方法来调整测量错误,但它们通常依赖于无法验证的假设,如果违反这些假设,可能会导致偏见的估计。因此,需要检测潜在的“离群”评估者的方法来提高数据收集阶段的数据质量。在本文中,我们提出了一种两阶段算法来检测评估结果的“离群”评估者往往高于或低于其对应物。在第一阶段,评估者的效果是通过拟合回归模型获得的。在第二阶段,进行了假设检验以检测“离群”评估者,在该评估者中,我们考虑每个测试的每个假设检验的功率和错误的发现率(FDR)。我们进行了一项广泛的仿真研究来评估所提出的方法,并通过检测潜在的“离群”听力学家在数据收集阶段的潜在“离群”听力学家的听力学评估阶段,这是一项在护士健康研究中检查听力损失的风险因素的流行病学研究II。我们的仿真研究表明,我们的方法不仅可以检测到真正的“离群”评估者,而且不太可能错误地拒绝真实的“正常”评估者。我们的两个阶段“离群值”检测算法是一种灵活的方法,可以有效地检测“离群”评估器,因此可以在数据收集阶段提高数据质量。
Epidemiologic and medical studies often rely on evaluators to obtain measurements of exposures or outcomes for study participants, and valid estimates of associations depends on the quality of data. Even though statistical methods have been proposed to adjust for measurement errors, they often rely on unverifiable assumptions and could lead to biased estimates if those assumptions are violated. Therefore, methods for detecting potential `outlier' evaluators are needed to improve data quality during data collection stage. In this paper, we propose a two-stage algorithm to detect `outlier' evaluators whose evaluation results tend to be higher or lower than their counterparts. In the first stage, evaluators' effects are obtained by fitting a regression model. In the second stage, hypothesis tests are performed to detect `outlier' evaluators, where we consider both the power of each hypothesis test and the false discovery rate (FDR) among all tests. We conduct an extensive simulation study to evaluate the proposed method, and illustrate the method by detecting potential `outlier' audiologists in the data collection stage for the Audiology Assessment Arm of the Conservation of Hearing Study, an epidemiologic study for examining risk factors of hearing loss in the Nurses' Health Study II. Our simulation study shows that our method not only can detect true `outlier' evaluators, but also is less likely to falsely reject true `normal' evaluators. Our two-stage `outlier' detection algorithm is a flexible approach that can effectively detect `outlier' evaluators, and thus data quality can be improved during data collection stage.