论文标题
视觉辅助机器人操纵的模棱两可的多对象姿势优化
Ambiguity-Aware Multi-Object Pose Optimization for Visually-Assisted Robot Manipulation
论文作者
论文摘要
6D对象姿势估计旨在使用单个图像或多个图像来推断对象和相机之间的相对姿势。大多数作品都集中在预测物体姿势下,而没有相关的不确定性在遮挡和结构歧义(对称性)下。但是,这些作品需要先前的有关形状属性的信息,而现实中这种情况几乎无法满足。即使是不对称的对象也可以在视点变化下对称。此外,在将它们扩展到机器人技术应用程序时,获取和融合不同的传感器数据具有挑战性。解决这些局限性,我们提出了一个歧义感知的6D对象姿势估计网络Prima6d ++,作为一种通用的不确定性预测方法。姿势估计中的主要挑战,例如遮挡和对称性,可以基于预测的歧义以通用方式来处理。具体而言,我们设计一个网络来重建目标对象的三个旋转轴原始图像,并预测沿每个原始轴的潜在不确定性。利用估计的不确定性,我们通过将视觉测量和相机姿势视为对象大满贯问题来优化多对象姿势。所提出的方法显示了T-less和YCB-VIDEO数据集的性能改善。我们进一步展示了视觉辅助机器人操纵的实时场景识别能力。我们的代码和补充材料可在https://github.com/rpmsnu/prima6d上找到。
6D object pose estimation aims to infer the relative pose between the object and the camera using a single image or multiple images. Most works have focused on predicting the object pose without associated uncertainty under occlusion and structural ambiguity (symmetricity). However, these works demand prior information about shape attributes, and this condition is hardly satisfied in reality; even asymmetric objects may be symmetric under the viewpoint change. In addition, acquiring and fusing diverse sensor data is challenging when extending them to robotics applications. Tackling these limitations, we present an ambiguity-aware 6D object pose estimation network, PrimA6D++, as a generic uncertainty prediction method. The major challenges in pose estimation, such as occlusion and symmetry, can be handled in a generic manner based on the measured ambiguity of the prediction. Specifically, we devise a network to reconstruct the three rotation axis primitive images of a target object and predict the underlying uncertainty along each primitive axis. Leveraging the estimated uncertainty, we then optimize multi-object poses using visual measurements and camera poses by treating it as an object SLAM problem. The proposed method shows a significant performance improvement in T-LESS and YCB-Video datasets. We further demonstrate real-time scene recognition capability for visually-assisted robot manipulation. Our code and supplementary materials are available at https://github.com/rpmsnu/PrimA6D.