论文标题
深度虚拟到真实的蒸馏行人交叉预测
Deep Virtual-to-Real Distillation for Pedestrian Crossing Prediction
论文作者
论文摘要
行人穿越是与车辆自然驾驶行为相抵触的最典型行为之一。因此,行人穿越预测是影响安全驾驶车辆计划的主要任务之一。但是,当前依靠实际驾驶场景中实际收集的数据的方法无法描绘并涵盖实际交通世界中的各种场景条件。为此,我们通过引入可以方便地生成的合成数据,并通过简单且轻巧的实现来制定一个可以方便地生成的合成数据,并借用合成视频中的人行道交叉预测中的人行人运动的丰富信息,从而制定了一个深层至真实的蒸馏框架。为了验证该框架,我们使用4667个虚拟视频构建一个基准测试,该视频拥有约745K帧(称为Virtual-Pedcross-4667),并评估在实际驾驶情况下收集的两个具有挑战性的数据集中提出的方法,即JAAD和PIE数据集。通过详尽的实验分析证明了该框架的最新性能。数据集和代码可以从网站\ url {http://www.lotvs.net/code_data/}下载。
Pedestrian crossing is one of the most typical behavior which conflicts with natural driving behavior of vehicles. Consequently, pedestrian crossing prediction is one of the primary task that influences the vehicle planning for safe driving. However, current methods that rely on the practically collected data in real driving scenes cannot depict and cover all kinds of scene condition in real traffic world. To this end, we formulate a deep virtual to real distillation framework by introducing the synthetic data that can be generated conveniently, and borrow the abundant information of pedestrian movement in synthetic videos for the pedestrian crossing prediction in real data with a simple and lightweight implementation. In order to verify this framework, we construct a benchmark with 4667 virtual videos owning about 745k frames (called Virtual-PedCross-4667), and evaluate the proposed method on two challenging datasets collected in real driving situations, i.e., JAAD and PIE datasets. State-of-the-art performance of this framework is demonstrated by exhaustive experiment analysis. The dataset and code can be downloaded from the website \url{http://www.lotvs.net/code_data/}.