论文标题

在ACTS软件框架的上下文中探索不同参数优化算法

Exploration of different parameter optimization algorithms within the context of ACTS software framework

论文作者

Garg, Rocky Bala, Hofgard, Elyssa, Tompkins, Lauren, Gray, Heather

论文摘要

确定带电颗粒的轨迹的粒子轨迹重建是完整事件重建链的关键且耗时的组成部分。基础软件很复杂,包括许多数学上强烈的算法,每个算法都涉及特定的跟踪子过程。这些算法具有许多需要预先提供的输入参数。但是,很难确定产生最佳性能的这些参数的配置。当前,输入参数值是根据先前的经验或使用蛮力技术决定的。非常需要一种能够自动调整这些参数的参数优化方法,这是非常需要的。在当前的工作中,我们探索了各种基于机器学习的优化方法,以设计合适的技术来优化复杂的轨道重建环境中的参数。这些方法是根据针对高效率的指标评估的,同时保持副本和伪造的价格较小。我们专注于可以应用于涉及非差异损失函数的问题的衍生免费优化方法。在我们的研究中,我们考虑了在通用跟踪软件(ACTS)框架中定义的跟踪算法。我们使用对应于ACTS通用检测器和ATLAS ITK检测器几何的ACTS软件的模拟数据测试我们的方法。

Particle track reconstruction, in which the trajectories of charged particles are determined, is a critical and time consuming component of the full event reconstruction chain. The underlying software is complex and consists of a number of mathematically intense algorithms, each dealing with a particular tracking sub-process. These algorithms have many input parameters that need to be supplied in advance. However, it is difficult to determine the configuration of these parameters that produces the best performance. Currently, the input parameter values are decided on the basis of prior experience or by the use of brute force techniques. A parameter optimization approach that is able to automatically tune these parameters for high performance is greatly desirable. In the current work, we explore various machine learning based optimization methods to devise a suitable technique to optimize parameters in the complex track reconstruction environment. These methods are evaluated on the basis of a metric that targets high efficiency while keeping the duplicate and fake rates small. We focus on derivative free optimization approaches that can be applied to problems involving non-differentiable loss functions. For our studies, we consider the tracking algorithms defined within A Common Tracking Software (ACTS) framework. We test our methods using simulated data from ACTS software corresponding to the ACTS Generic detector and the ATLAS ITk detector geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源