论文标题
没有单词的证据:三角形网格中的三角形
A Proof Without Words: Triangles in the Triangular Grid
论文作者
论文摘要
这个没有单词的证据表明,有$ \ binom {n+2} {4} $在常规的$ n $ -n $ -vertices-per侧三角形网格中,通过描述$ \ {1,2,\ dots,n+2 \} $ quare e e e e e e eariang intal intal in niang ind in griang的四元素的地图,通过描述$ \ \ {1,2,\ dots的四个元素子集的地图来描述。具体来说,我们说明了与此两次射击的子集$ \ {4,5,8,11 \} $相对应的三角形时,当$ n = 10 $时。
This proof without words demonstrates that there are $\binom{n+2}{4}$ equilateral triangles in the regular $n$-vertices-per-side triangular grid by describing a map from four-element subsets of $\{1,2, \dots, n+2\}$ into the set of equilateral triangles in this grid. Specifically, we illustrate the triangle that corresponds to the subset $\{4,5,8,11\}$ under this bijection when $n = 10$.