论文标题

使用合成队列数据进行可视化的脊髓脊髓性共济失调的交互式队列探索

Interactive cohort exploration for spinocerebellar ataxias using synthetic cohort data for visualization

论文作者

Wegner, Philipp, Schaaf, Sebastian, Uebachs, Mischa, Grobe-Einsler, Marcus, Klockgether, Thomas, Fluck, Juliane, Faber, Jennifer

论文摘要

动机:数据的可视化是理解和从临床数据中提出假设的关键步骤。但是,对于临床医生而言,由于缺乏有关数据处理和可视化的技术知识,可视化通常会付出很大的努力。该应用程序提供了一种易于使用的解决方案,具有直观的设计,可实现各种绘图功能。目的是为临床用户提供一个直观的解决方案。在创建图之前,几乎不需要入职,而问题的复杂性可以增长到特定的角落案例。为了允许轻松启动和测试,我们根据稀有神经运动障碍的真实数据合并了一个合成队列数据集:最常见的常染色体遗传性脊椎胡子(SCAS)类型1、2、3和6(SCA1、2、2、3和6)。方法:我们创建了一个基于DJANGO的后端应用程序,该应用程序将数据提供给基于React的前端,该应用程序用于绘制绘图。创建了一个合成队列,以部署无障碍版本的情况,而无需违反任何数据保护指南。在这里,我们在数据中添加了正常的分布式噪声,因此可以防止在保持分布和一般相关性的同时重新识别。结果:这项工作介绍了Scaview,这是一种用户友好的,基于Web的服务,可以在可点击接口中启用数据可视化,从而允许直观的图形处理,旨在在可点击接口中启用数据可视化。该服务是部署的,可以通过最常见的SCA中观察性研究的大型纵向数据集创建的合成队列进行测试。

Motivation: Visualization of data is a crucial step to understanding and deriving hypotheses from clinical data. However, for clinicians, visualization often comes with great effort due to the lack of technical knowledge about data handling and visualization. The application offers an easy-to-use solution with an intuitive design that enables various kinds of plotting functions. The aim was to provide an intuitive solution with a low entrance barrier for clinical users. Little to no onboarding is required before creating plots, while the complexity of questions can grow up to specific corner cases. To allow for an easy start and testing with SCAview, we incorporated a synthetic cohort dataset based on real data of rare neurological movement disorders: the most common autosomal-dominantly inherited spinocerebellar ataxias (SCAs) type 1, 2, 3, and 6 (SCA1, 2, 3 and 6). Methods: We created a Django-based backend application that serves the data to a React-based frontend that uses Plotly for plotting. A synthetic cohort was created to deploy a version of SCAview without violating any data protection guidelines. Here, we added normal distributed noise to the data and therefore prevent re-identification while keeping distributions and general correlations. Results: This work presents SCAview, an user-friendly, interactive web-based service that enables data visualization in a clickable interface allowing intuitive graphical handling that aims to enable data visualization in a clickable interface. The service is deployed and can be tested with a synthetic cohort created based on a large, longitudinal dataset from observational studies in the most common SCAs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源