论文标题

机器学习在不确定性量化模型中的适用性

Applicability of machine learning in uncertainty quantification of turbulence models

论文作者

Matha, Marcel, Kucharczyk, Karsten

论文摘要

白皮书:这项工作的目的是应用和分析机器学习方法,以量化湍流模型的不确定性量化。在这项工作中,我们研究了特征空间扰动方法的经典和数据驱动的变体。该方法旨在估计与建模雷诺应力张量在Navier-Stokes方程中用于计算流体动力学(CFD)中的不确定性。通过添加数据驱动的,物理受限的机器学习方法来扩展基础方法,以预测雷诺强调张力张量的局部扰动。使用分离的二维流,我们研究了机器学习模型的概括属性,并阐明了应用数据驱动扩展的影响。

White paper: The aim of this work is to apply and analyze machine learning methods for uncertainty quantification of turbulence models. In this work we investigate the classical and data-driven variants of the eigenspace perturbation method. This methodology is designed to estimate the uncertainties related to the shape of the modeled Reynolds stress tensor in the Navier-Stokes equations for Computational Fluid Dynamics (CFD). The underlying methodology is extended by adding a data-driven, physics-constrained machine learning approach in order to predict local perturbations of the Reynolds stress tensor. Using separated two-dimensional flows, we investigate the generalization properties of the machine learning models and shed a light on impacts of applying a data-driven extension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源