论文标题
平行广度优先搜索和最短路径和更强的概念
Parallel Breadth-First Search and Exact Shortest Paths and Stronger Notions for Approximate Distances
论文作者
论文摘要
我们介绍了更强的概念,以实现近似单源的最短路径距离,展示如何从较弱的标准概念中有效计算它们,并演示这些新概念和转换的算法。一种应用程序是用于计算精确单源最短路径图的第一个工作效率平行算法 - 解决并行计算中的主要开放问题。 给定有针对多项式的非负整数长度的有向图中的源顶点,该算法计算出$ M \ m \ log^{o(1)n $ Work和$ n^{1/2+o(1)} $ depth的精确路径树。以前,即使在未指向且未加权的图(即计算A BFS-Tree)的情况下,即使没有显着增加工作的算法(即计算A BFS-Tree),也没有明显增加工作的琐碎算法。 我们的主要结果是使用$ \ log^{o(1)} n $标准近似距离计算来产生近似距离,以满足减法三角不平等(最多(1+ \ varepsilon)$ factor),甚至诱导只有略微偏离的路径中的最近路径树。这些加强的近似值在算法上更加强大,并克服了使用近似距离的知名且经常遇到的障碍。在有向图中,它们甚至可以将其提升到确切的距离。这将导致任何(并行或分布式)算法的黑盒转换,以在有向图中的最短路径中近似最短的路径,以基本上没有成本计算算法计算精确的距离。将其应用于Fineman等人最近的突破。为了计算近似Hopset的近似SSSP距离,可为确切的最短路径提供新的并行和分布式算法。
We introduce stronger notions for approximate single-source shortest-path distances, show how to efficiently compute them from weaker standard notions, and demonstrate the algorithmic power of these new notions and transformations. One application is the first work-efficient parallel algorithm for computing exact single-source shortest paths graphs -- resolving a major open problem in parallel computing. Given a source vertex in a directed graph with polynomially-bounded nonnegative integer lengths, the algorithm computes an exact shortest path tree in $m \log^{O(1)} n$ work and $n^{1/2+o(1)}$ depth. Previously, no parallel algorithm improving the trivial linear depths of Dijkstra's algorithm without significantly increasing the work was known, even for the case of undirected and unweighted graphs (i.e., for computing a BFS-tree). Our main result is a black-box transformation that uses $\log^{O(1)} n$ standard approximate distance computations to produce approximate distances which also satisfy the subtractive triangle inequality (up to a $(1+\varepsilon)$ factor) and even induce an exact shortest path tree in a graph with only slightly perturbed edge lengths. These strengthened approximations are algorithmically significantly more powerful and overcome well-known and often encountered barriers for using approximate distances. In directed graphs they can even be boosted to exact distances. This results in a black-box transformation of any (parallel or distributed) algorithm for approximate shortest paths in directed graphs into an algorithm computing exact distances at essentially no cost. Applying this to the recent breakthroughs of Fineman et al. for compute approximate SSSP-distances via approximate hopsets gives new parallel and distributed algorithm for exact shortest paths.