论文标题
一个基于单SIV $^ - 钻石中心的量子中继器平台,并具有腔体辅助,全光旋转访问和快速连贯的驾驶
A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving
论文作者
论文摘要
量子密钥分布可以根据量子力学原理实现安全的通信。由于信号衰减,基于纤维的量子通信的距离限于约一百公里。因此,需要量子中继器建立大规模的量子网络。理想的量子中继器节点具有有效连接到量子信息载体的光子的量子存储器。钻石,尤其是负收集的硅离面中心的颜色中心有望建立此类节点。主要的障碍是颜色中心旋转到光纤网络的高斯光学器件之间的效率低下。在这里,我们提出一个有效的自旋界面。单个硅空中中心与半球形Fabry-Pérot微腔的模式结合在一起,显示在液体氦气浴中操作时大于1的purcell因子。我们演示了连贯的光学驾驶,RABI频率为$ 290 \,\ Mathrm {MHz} $,并在强磁场中对电子旋转的全光访问最高为$ 3.2 \,\ Mathrm {T} $。在$ 80 \,\%$的保真度和$ 350 \,\ mathrm {ns} $的寿命中,在$ 67 \,\ Mathrm {ns} $内的旋转初始化。自旋光子界面是被动稳定的,可以通过在半球形的Fabry-Pérot镜面结构中放置一个含有纳米座的颜色中心,并选择短的空腔长度。因此,我们的演示为实现量子中继器应用程序开辟了道路。
Quantum key distribution enables secure communication based on the principles of quantum mechanics. The distance in fiber-based quantum communication is limited to about a hundred kilometers due to signal attenuation. Thus, quantum repeaters are required to establish large-scale quantum networks. Ideal quantum repeater nodes possess a quantum memory which is efficiently connected to photons, the carrier of quantum information. Color centers in diamond and, in particular, the negatively-charged silicon-vacancy centers are promising candidates to establish such nodes. The major obstacle is an inefficient connection between the color centers spin to the Gaussian optics of fiber networks. Here, we present an efficient spin-photon interface. Individual silicon-vacancy centers coupled to the mode of a hemispherical Fabry-Pérot microcavity show Purcell-factors larger than 1 when operated in a bath of liquid Helium. We demonstrate coherent optical driving with a Rabi frequency of $290\,\mathrm{MHz}$ and all-optical access to the electron spin in strong magnetic fields of up to $3.2\,\mathrm{T}$. Spin initialization within $67\,\mathrm{ns}$ with a fidelity of $80\,\%$ and a lifetime of $350\,\mathrm{ns}$ are reached inside the cavity. The spin-photon interface is passively stable, enabled by placing a color center containing nanodiamond in the hemispherical Fabry-Pérot mirror structure and by choosing short cavity lengths. Therefore, our demonstration opens the way to realize quantum repeater applications.