论文标题

一项关于多角度和多日期遥感立体声图像的密集图像匹配的深度学习方法的比较研究

A Comparative Study on Deep-Learning Methods for Dense Image Matching of Multi-angle and Multi-date Remote Sensing Stereo Images

论文作者

Albanwan, Hessah, Qin, Rongjun

论文摘要

深度学习(DL)立体声匹配方法在遥感卫星数据集中引起了极大的关注。但是,这些现有研究中的大多数仅基于几个/单个立体声图像的评估,这些图像缺乏对卫星立体声图像的鲁棒DL方法的系统评估,其放射线和几何构型各不相同。本文通过数百种多个多站点的卫星立体声对评估了四种DL立体声匹配方法,具有不同的几何配置,与传统的良好实力的人口普查 - SGM(半全球匹配)相对,以全面地理解其准确性,可靠性,强大的,普遍的能力以及实用性。 DL方法包括通过卷积神经网络(MC-CNN)进行基于学习的成本度量,然后使用SGM,以及使用几何和上下文网络(GCNET),金字塔立体声匹配网络(PSMNET)和Leastereo的三个端到端学习模型。我们的实验表明,E2E算法可以达到几何精确度的上限,而对于看不见的数据可能无法概括。基于学习的成本度量和人口普查 - SGM相当强大,可以始终如一地获得可接受的结果。所有DL算法对立体对的几何配置都是可靠的,并且与人口普查相比较不敏感,而基于学习的成本指标在在不同的数据集中进行培训(空中或接地视图)时可以概括卫星图像。

Deep learning (DL) stereo matching methods gained great attention in remote sensing satellite datasets. However, most of these existing studies conclude assessments based only on a few/single stereo images lacking a systematic evaluation on how robust DL methods are on satellite stereo images with varying radiometric and geometric configurations. This paper provides an evaluation of four DL stereo matching methods through hundreds of multi-date multi-site satellite stereo pairs with varying geometric configurations, against the traditional well-practiced Census-SGM (Semi-global matching), to comprehensively understand their accuracy, robustness, generalization capabilities, and their practical potential. The DL methods include a learning-based cost metric through convolutional neural networks (MC-CNN) followed by SGM, and three end-to-end (E2E) learning models using Geometry and Context Network (GCNet), Pyramid Stereo Matching Network (PSMNet), and LEAStereo. Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalize well for unseen data. The learning-based cost metric and Census-SGM are rather robust and can consistently achieve acceptable results. All DL algorithms are robust to geometric configurations of stereo pairs and are less sensitive in comparison to the Census-SGM, while learning-based cost metrics can generalize on satellite images when trained on different datasets (airborne or ground-view).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源