论文标题

组合Mori-Zwanzig理论

Combinatorial Mori-Zwanzig Theory

论文作者

Zhu, Yuanran

论文摘要

我们介绍了组合版本Mori-Zwanzig理论,并从中发展为相关函数的自洽演变方程家族,或者是互动多体系统的绿色功能。核心思想是使用ANSATZ重写常规Mori-Zwanzig方程的记忆内核(自能量)作为相关(Green)函数的函数组成。然后,使用一系列代数组合工具,尤其是交换性和非交通性钟形多项式,用于确定组成函数的确切泰勒串联序列扩展。所得组合的Mori-Zwanzig方程(CMZE)产生了相关(Green)功能运动方程的新型非扰动扩展。得出这种组合膨胀的结构方程类似于组合dyson-schinginger方程,并且可以看作是其时间域类似物。在介绍了CMZE的抽象单词和树的表示之后,我们在经典,随机和量子多体系统中显示了其广泛的应用。在所有这些示例中,我们使用CMZE获得的新的自洽扩展类似于量子多体理论和晶格统计场理论中使用的图形骨架扩展。我们希望这样一个新框架可以用于计算强相关/交互式多体系统的相关性(绿色)函数。

We introduce a combinatorial version Mori-Zwanzig theory and develop from it a family of self-consistent evolution equations for the correlation function or Green's function of interactive many-body systems. The core idea is to use an ansatz to rewrite the memory kernel (self-energy) of the regular Mori-Zwanzig equation as a function composition of the correlation (Green's) function. Then a series of algebraic combinatorial tools, especially the commutative and noncommutative Bell polynomials, are used to determine the exact Taylor series expansion of the composition function. The resulting combinatorial Mori-Zwanzig equation (CMZE) yields novel non-perturbative expansions of the equation of motion for the correlation (Green's) function. The structural equation for deriving such a combinatorial expansion resembles the combinatorial Dyson-Schwinger equation and may be viewed as its temporal-domain analogue. After introducing the abstract word and tree representation of the CMZE, we show its wide-range application in classical, stochastic, and quantum many-body systems. In all these examples, the new self-consistent expansions we obtained with the CMZE are similar to the diagrammatic skeleton expansions used in quantum many-body theory and lattice statistical field theory. We expect such a new framework can be used to calculate the correlation (Green's) function for strongly correlated/interactive many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源