论文标题
降低能源系统计划中的气候风险:具有存储的模型的后验时间序列聚合
Reducing climate risk in energy system planning: a posteriori time series aggregation for models with storage
论文作者
论文摘要
可变可再生能源(例如太阳能和风能)的增长正在增加能源系统计划中气候不确定性的影响。理想地解决此问题需要至少几十年的高分辨率时间序列。但是,在此类数据集上解决容量扩展计划模型通常需要过多的计算时间或内存。为了降低计算成本,用户经常采用时间序列聚合来将需求和天气时间序列压缩为较小的时间步骤。方法通常是先验的,仅采用有关输入时间序列的信息。最近的研究强调了这种方法的局限性,因为减少输入时间序列上的统计误差指标并不会导致更准确的模型输出。此外,许多聚合方案由于扭曲年表而不适合存储模型。在本文中,我们介绍了一种用于存储模型的后时间序列聚合方案。我们的方法适应了基础能源系统模型;即使使用相同的时间序列输入,聚集在具有不同技术或拓扑的系统中也可能有所不同。此外,它们保留了年表,因此允许对存储技术进行建模。我们研究了许多方法。我们发现,后验方法的性能比先验方法更好,主要是通过系统的识别和保存相关的极端事件。我们希望这些工具在能力扩展计划研究中更易于管理。我们将模型,数据和代码公开可用。
The growth in variable renewables such as solar and wind is increasing the impact of climate uncertainty in energy system planning. Addressing this ideally requires high-resolution time series spanning at least a few decades. However, solving capacity expansion planning models across such datasets often requires too much computing time or memory. To reduce computational cost, users often employ time series aggregation to compress demand and weather time series into a smaller number of time steps. Methods are usually a priori, employing information about the input time series only. Recent studies highlight the limitations of this approach, since reducing statistical error metrics on input time series does not in general lead to more accurate model outputs. Furthermore, many aggregation schemes are unsuitable for models with storage since they distort chronology. In this paper, we introduce a posteriori time series aggregation schemes for models with storage. Our methods adapt to the underlying energy system model; aggregation may differ in systems with different technologies or topologies even with the same time series inputs. Furthermore, they preserve chronology and hence allow modelling of storage technologies. We investigate a number of approaches. We find that a posteriori methods can perform better than a priori ones, primarily through a systematic identification and preservation of relevant extreme events. We hope that these tools render long demand and weather time series more manageable in capacity expansion planning studies. We make our models, data, and code publicly available.