论文标题

di-nids:域不变网络入侵检测系统

DI-NIDS: Domain Invariant Network Intrusion Detection System

论文作者

Layeghy, Siamak, Baktashmotlagh, Mahsa, Portmann, Marius

论文摘要

基于机器学习的网络入侵检测系统(NIDSS)的性能在部署在特征分布的网络上与培训数据集的特征分布明显不同。在各种应用程序(例如计算机视觉)中,域适应技术在减轻培训和测试数据的分布之间的差距方面已经成功。但是,在网络入侵检测的情况下,最新的域适应方法的成功有限。根据最近的研究以及我们自己的结果,当“看不见的”测试数据集不遵循训练数据集分布时,NID的性能会大大恶化。在某些情况下,交换火车和测试数据集使这更加严重。为了增强基于机器学习的网络入侵检测系统的普遍性,我们建议使用来自多个网络域的对抗域适应的域不变特征,然后应用无监督的技术来识别异常,即入侵。更具体地说,我们在标记的源域上训练域对抗神经网络,提取域不变特征,并训练单级SVM(OSVM)模型以检测异常。在测试时,我们将未标记的测试数据馈送到功能提取器网络中,以将其投影到不变空间中,然后将OSVM应用于提取的特征上,以实现我们检测入侵的最终目标。我们在NFV2-CIC-2018和NFV2-UNSW-NB15的NIDS基准数据集上进行的广泛实验表明,我们提出的设置与以前的方法相比表明了较高的跨域性能。

The performance of machine learning based network intrusion detection systems (NIDSs) severely degrades when deployed on a network with significantly different feature distributions from the ones of the training dataset. In various applications, such as computer vision, domain adaptation techniques have been successful in mitigating the gap between the distributions of the training and test data. In the case of network intrusion detection however, the state-of-the-art domain adaptation approaches have had limited success. According to recent studies, as well as our own results, the performance of an NIDS considerably deteriorates when the `unseen' test dataset does not follow the training dataset distribution. In some cases, swapping the train and test datasets makes this even more severe. In order to enhance the generalisibility of machine learning based network intrusion detection systems, we propose to extract domain invariant features using adversarial domain adaptation from multiple network domains, and then apply an unsupervised technique for recognising abnormalities, i.e., intrusions. More specifically, we train a domain adversarial neural network on labelled source domains, extract the domain invariant features, and train a One-Class SVM (OSVM) model to detect anomalies. At test time, we feedforward the unlabeled test data to the feature extractor network to project it into a domain invariant space, and then apply OSVM on the extracted features to achieve our final goal of detecting intrusions. Our extensive experiments on the NIDS benchmark datasets of NFv2-CIC-2018 and NFv2-UNSW-NB15 show that our proposed setup demonstrates superior cross-domain performance in comparison to the previous approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源