论文标题

黄斑或视神经头结构在诊断青光眼方面是否更好?使用AI和宽场光学相干断层扫描的答案

Are Macula or Optic Nerve Head Structures better at Diagnosing Glaucoma? An Answer using AI and Wide-Field Optical Coherence Tomography

论文作者

Chiang, Charis Y. N., Braeu, Fabian, Chuangsuwanich, Thanadet, Tan, Royston K. Y., Chua, Jacqueline, Schmetterer, Leopold, Thiery, Alexandre, Buist, Martin, Girard, Michaël J. A.

论文摘要

目的:(1)在3D宽场光学相干断层扫描(OCT)扫描中开发一种深度学习算法以自动分段视神经头(ONH)和黄斑的结构; (2)评估3D黄斑或ONH结构(或两者的组合)是否为青光眼提供了最佳的诊断能力。方法:进行了一项横断面比较研究,其中包括来自319名青光眼受试者和298名非云糖瘤受试者的宽场扫描源OCT扫描。所有扫描均得到补偿,以提高组织的可见性。我们开发了一种深度学习算法,通过使用270个手动注释的B扫描进行训练,从而自动为所有主要的ONH组织结构标记。使用骰子系数(DC)评估我们算法的性能。然后,使用500 OCT体积的组合设计了青光眼分类算法(3D CNN),其相应的自动分割面罩。该算法在3个数据集上进行了训练和测试:OCT扫描仅含有黄斑组织,这些组织仅包含ONH组织,以及全部宽大的OCT扫描。使用AUC报告了每个数据集的分类性能。结果:我们的分割算法能够以0.94 $ \ pm $ 0.003的直流对ONH和黄斑组织进行分割。该分类算法最好能够使用AUC为0.99 $ \ pm $ 0.01的宽场3D-OCT量诊断青光眼,然后使用AUC的AUC量为0.93 $ \ pm $ 0.06,最终以黄斑量为0.91 $ \ pm pm $ 0.11。结论:这项研究表明,与仅包含ONH或黄斑的典型OCT图像相比,使用宽场OCT可能可以显着改善青光眼诊断。这可能会鼓励主流采用3D宽阔的OCT扫描。对于使用传统机器的临床AI研究,我们建议使用ONH扫描而不是黄斑扫描。

Purpose: (1) To develop a deep learning algorithm to automatically segment structures of the optic nerve head (ONH) and macula in 3D wide-field optical coherence tomography (OCT) scans; (2) To assess whether 3D macula or ONH structures (or the combination of both) provide the best diagnostic power for glaucoma. Methods: A cross-sectional comparative study was performed which included wide-field swept-source OCT scans from 319 glaucoma subjects and 298 non-glaucoma subjects. All scans were compensated to improve deep-tissue visibility. We developed a deep learning algorithm to automatically label all major ONH tissue structures by using 270 manually annotated B-scans for training. The performance of our algorithm was assessed using the Dice coefficient (DC). A glaucoma classification algorithm (3D CNN) was then designed using a combination of 500 OCT volumes and their corresponding automatically segmented masks. This algorithm was trained and tested on 3 datasets: OCT scans cropped to contain the macular tissues only, those to contain the ONH tissues only, and the full wide-field OCT scans. The classification performance for each dataset was reported using the AUC. Results: Our segmentation algorithm was able to segment ONH and macular tissues with a DC of 0.94 $\pm$ 0.003. The classification algorithm was best able to diagnose glaucoma using wide-field 3D-OCT volumes with an AUC of 0.99 $\pm$ 0.01, followed by ONH volumes with an AUC of 0.93 $\pm$ 0.06, and finally macular volumes with an AUC of 0.91 $\pm$ 0.11. Conclusions: this study showed that using wide-field OCT as compared to the typical OCT images containing just the ONH or macular may allow for a significantly improved glaucoma diagnosis. This may encourage the mainstream adoption of 3D wide-field OCT scans. For clinical AI studies that use traditional machines, we would recommend the use of ONH scans as opposed to macula scans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源