论文标题
黄斑或视神经头结构在诊断青光眼方面是否更好?使用AI和宽场光学相干断层扫描的答案
Are Macula or Optic Nerve Head Structures better at Diagnosing Glaucoma? An Answer using AI and Wide-Field Optical Coherence Tomography
论文作者
论文摘要
目的:(1)在3D宽场光学相干断层扫描(OCT)扫描中开发一种深度学习算法以自动分段视神经头(ONH)和黄斑的结构; (2)评估3D黄斑或ONH结构(或两者的组合)是否为青光眼提供了最佳的诊断能力。方法:进行了一项横断面比较研究,其中包括来自319名青光眼受试者和298名非云糖瘤受试者的宽场扫描源OCT扫描。所有扫描均得到补偿,以提高组织的可见性。我们开发了一种深度学习算法,通过使用270个手动注释的B扫描进行训练,从而自动为所有主要的ONH组织结构标记。使用骰子系数(DC)评估我们算法的性能。然后,使用500 OCT体积的组合设计了青光眼分类算法(3D CNN),其相应的自动分割面罩。该算法在3个数据集上进行了训练和测试:OCT扫描仅含有黄斑组织,这些组织仅包含ONH组织,以及全部宽大的OCT扫描。使用AUC报告了每个数据集的分类性能。结果:我们的分割算法能够以0.94 $ \ pm $ 0.003的直流对ONH和黄斑组织进行分割。该分类算法最好能够使用AUC为0.99 $ \ pm $ 0.01的宽场3D-OCT量诊断青光眼,然后使用AUC的AUC量为0.93 $ \ pm $ 0.06,最终以黄斑量为0.91 $ \ pm pm $ 0.11。结论:这项研究表明,与仅包含ONH或黄斑的典型OCT图像相比,使用宽场OCT可能可以显着改善青光眼诊断。这可能会鼓励主流采用3D宽阔的OCT扫描。对于使用传统机器的临床AI研究,我们建议使用ONH扫描而不是黄斑扫描。
Purpose: (1) To develop a deep learning algorithm to automatically segment structures of the optic nerve head (ONH) and macula in 3D wide-field optical coherence tomography (OCT) scans; (2) To assess whether 3D macula or ONH structures (or the combination of both) provide the best diagnostic power for glaucoma. Methods: A cross-sectional comparative study was performed which included wide-field swept-source OCT scans from 319 glaucoma subjects and 298 non-glaucoma subjects. All scans were compensated to improve deep-tissue visibility. We developed a deep learning algorithm to automatically label all major ONH tissue structures by using 270 manually annotated B-scans for training. The performance of our algorithm was assessed using the Dice coefficient (DC). A glaucoma classification algorithm (3D CNN) was then designed using a combination of 500 OCT volumes and their corresponding automatically segmented masks. This algorithm was trained and tested on 3 datasets: OCT scans cropped to contain the macular tissues only, those to contain the ONH tissues only, and the full wide-field OCT scans. The classification performance for each dataset was reported using the AUC. Results: Our segmentation algorithm was able to segment ONH and macular tissues with a DC of 0.94 $\pm$ 0.003. The classification algorithm was best able to diagnose glaucoma using wide-field 3D-OCT volumes with an AUC of 0.99 $\pm$ 0.01, followed by ONH volumes with an AUC of 0.93 $\pm$ 0.06, and finally macular volumes with an AUC of 0.91 $\pm$ 0.11. Conclusions: this study showed that using wide-field OCT as compared to the typical OCT images containing just the ONH or macular may allow for a significantly improved glaucoma diagnosis. This may encourage the mainstream adoption of 3D wide-field OCT scans. For clinical AI studies that use traditional machines, we would recommend the use of ONH scans as opposed to macula scans.