论文标题

聆听用户的声音:自动汇总有用的应用程序评论

Listening to Users' Voice: Automatic Summarization of Helpful App Reviews

论文作者

Gao, Cuiyun, Li, Yaoxian, Qi, Shuhan, Liu, Yang, Wang, Xuan, Zheng, Zibin, Liao, Qing

论文摘要

应用程序评论是通过应用程序来了解用户体验的知识,为应用程序发布计划提供了有价值的信息,例如要修复的主要错误和要添加的重要功能。关于发布计划的应用程序审查挖掘的先前探索,但是,大多数研究强烈依赖于预定义的类或手动通知的评论。此外,以前尚未考虑新的评论特征,即将评论评为有用的用户数量,可以帮助捕获重要的评论。 在本文中,我们提出了一个名为Solar的新颖框架,旨在准确地总结对开发人员的有用用户评论。该框架主要包含三个模块:审核有用的预测模块,主题验证建模模块和多因素排名模块。评论有用的预测模块评估了评论的有用性,即审查是否对开发人员有用。主题索引建模模块将有用的评论的主题分组,还可以预测相关的情感,并且多因素排名模块旨在优先考虑每个主题的语义代表性评论作为评论摘要。对五个流行应用程序进行的实验表明,太阳能有效地审查了摘要,并且有望促进应用程序发布计划。

App reviews are crowdsourcing knowledge of user experience with the apps, providing valuable information for app release planning, such as major bugs to fix and important features to add. There exist prior explorations on app review mining for release planning, however, most of the studies strongly rely on pre-defined classes or manually-annotated reviews. Also, the new review characteristic, i.e., the number of users who rated the review as helpful, which can help capture important reviews, has not been considered previously. In the paper, we propose a novel framework, named SOLAR, aiming at accurately summarizing helpful user reviews to developers. The framework mainly contains three modules: The review helpfulness prediction module, topic-sentiment modeling module, and multi-factor ranking module. The review helpfulness prediction module assesses the helpfulness of reviews, i.e., whether the review is useful for developers. The topic-sentiment modeling module groups the topics of the helpful reviews and also predicts the associated sentiment, and the multi-factor ranking module aims at prioritizing semantically representative reviews for each topic as the review summary. Experiments on five popular apps indicate that SOLAR is effective for review summarization and promising for facilitating app release planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源