论文标题
关于rudin-shapiro的模量的振荡,其范围中间
On the oscillations of the modulus of Rudin-Shapiro polynomials around the middle of their ranges
论文作者
论文摘要
让$ r_k(t):= | p_k(e^{it})|^2 $或$ r_k(t):= | q_k(e^{it})|^2 $,其中$ p_k $和$ q_k $是通常的rudin-shapiro poludin-shapiro poludin-shapiro polynomials frem $ n-1 $ n = 2^k $。在此期间,$ r_k $的图表表明,在此期间,以浓密的方式以$ r_k(t)-n $的数量为单位。令$ n(i,r_k-n)$表示间隔$ i中$ r_k-n $的零数:= [α,β] \ subset [0,2π] $。改进早期结果仅针对$ i:= [0,2π] $,在本文中,我们表明$$ \ frac {n | i |} {8π} {8π} - \ frac {2}π(2n \ log n)^{1/2} {1/2} {1/2} - 1 \ leq n(i,r_k -n) \ frac {8}π(2n \ log n)^{1/2} \ ,, \ qQuad k \ geq 2 \ ,, $ i:$ i:= [α,β] \ subset [0,2π] $,$ | i | =β-α$表示间隔$ i $的长度。
Let either $R_k(t) := |P_k(e^{it})|^2$ or $R_k(t) := |Q_k(e^{it})|^2$, where $P_k$ and $Q_k$ are the usual Rudin-Shapiro polynomials of degree $n-1$ with $n=2^k$. The graphs of $R_k$ on the period suggest many zeros of $R_k(t)-n$ in a dense fashion on the period. Let $N(I,R_k-n)$ denote the number of zeros of $R_k-n$ in an interval $I := [α,β] \subset [0,2π]$. Improving earlier results stated only for $I := [0,2π]$, in this paper we show that $$\frac{n|I|}{8π} - \frac{2}π (2n\log n)^{1/2} - 1 \leq N(I,R_k-n) \leq \frac{n|I|}π + \frac{8}π(2n\log n)^{1/2}\,,\qquad k \geq 2\,,$$ for every $I := [α,β] \subset [0,2π]$, where $|I| = β-α$ denotes the length of the interval $I$.