论文标题
适当的全态图的局部连续扩展:低规范和无限型边界
Local continuous extension of proper holomorphic maps: low-regularity and infinite-type boundaries
论文作者
论文摘要
我们证明了有关局部连续扩展适当的全态地图$ f:d \rightarrowΩ$,$ d,ω\ varsubsetneq \ mathbb {c}^n $,对$ \ partial {d} $和$ \partialΩ$做出本地假设。对于$ \ partial {d},\partialΩ$的补丁比早期结果,第一个结果使我们的规律性要低得多。第二个结果(与之密切相关的结果)是借助Forstneric-Rosay的精神。但是,我们的假设允许$ \partialΩ$包含无限类型的边界点。
We prove a couple of results on local continuous extension of proper holomorphic maps $F:D \rightarrow Ω$, $D, Ω\varsubsetneq \mathbb{C}^n$, making local assumptions on $\partial{D}$ and $\partialΩ$. The first result allows us to have much lower regularity, for the patches of $\partial{D}, \partialΩ$ that are relevant, than in earlier results. The second result (and a result closely related to it) is in the spirit of a result by Forstneric--Rosay. However, our assumptions allow $\partialΩ$ to contain boundary points of infinite type.