论文标题

学员:与对比度学习完全自我监督的分布检测

CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning

论文作者

Guille-Escuret, Charles, Rodriguez, Pau, Vazquez, David, Mitliagkas, Ioannis, Monteiro, Joao

论文摘要

处理分布(OOD)样本已成为机器学习系统现实部署的主要股份。这项工作探讨了自我监督的对比学习的使用与两种类型的OOD样本的同时检测:看不见的类和对抗性扰动。首先,我们将自我监督的对比学习与最大平均差异(MMD)的两样本测试配对。这种方法使我们能够坚固地测试两套独立的样本集是否来自相同的分布,我们通过以比以前的工作更高的置信度区分CIFAR-10和CIFAR-10.1来证明其有效性。在这一成功的激励下,我们引入了学员(对比异常检测),这是一种新的单个样品检测方法。学员从MMD中汲取灵感,但利用同一样本的对比度转换之间的相似性。 Cadet在识别ImageNet上的对抗扰动样本方面优于现有的对抗检测方法,并实现可比较的性能,可以在两个具有挑战性的基准上使用看不见的标签检测方法:ImagEnet-O和Inaturalist。值得注意的是,学员是完全自我监管的,不需要标签用于分配样本,也不需要访问OOD示例。

Handling out-of-distribution (OOD) samples has become a major stake in the real-world deployment of machine learning systems. This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples: unseen classes and adversarial perturbations. First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test. This approach enables us to robustly test whether two independent sets of samples originate from the same distribution, and we demonstrate its effectiveness by discriminating between CIFAR-10 and CIFAR-10.1 with higher confidence than previous work. Motivated by this success, we introduce CADet (Contrastive Anomaly Detection), a novel method for OOD detection of single samples. CADet draws inspiration from MMD, but leverages the similarity between contrastive transformations of a same sample. CADet outperforms existing adversarial detection methods in identifying adversarially perturbed samples on ImageNet and achieves comparable performance to unseen label detection methods on two challenging benchmarks: ImageNet-O and iNaturalist. Significantly, CADet is fully self-supervised and requires neither labels for in-distribution samples nor access to OOD examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源