论文标题
接触几何方法,用于尖口附近的Glauber动力学及其限制
Contact geometric approach to Glauber dynamics near a cusp and its limitation
论文作者
论文摘要
我们研究了低温相位机制中的非平均平均田间模型,在该状态下,亚稳态的平衡状态发展出尖(Spinodal)奇异性。我们专注于著名的Glauber动力学,并设计一种联系Hamiltonian流动,该流程在该政权中捕捉了其一些粗略的功能。但是,我们证明,格劳伯的放松时间与汉密尔顿动态系统的放松时间的缩放定律之间存在不可避免的差异。
We study a nonequilibrium mean field Ising model in the low temperature phase regime, where metastable equilibrium states develop a cuspidal (spinodal) singularity. We focus on celebrated Glauber dynamics, and design a contact Hamiltonian flow which captures some of its rough features in this regime. We prove, however, that there is an inevitable discrepancy between the scaling laws for the relaxation time in the Glauber and the contact Hamiltonian dynamical systems.