论文标题
使用辐射场传播的无监督的多视图对象分割
Unsupervised Multi-View Object Segmentation Using Radiance Field Propagation
论文作者
论文摘要
我们提出了辐射场传播(RFP),这是一种在重建过程中仅在场景的未标记的多视图图像的情况下,在重建过程中细分对象的一种新型方法。 RFP源自新兴的神经辐射场技术,该技术共同编码具有外观和几何形状的语义。我们方法的核心是一种具有双向光度损失的单个对象的辐射场的新型传播策略,从而使场景不监督分配到与不同对象实例相对应的显着或有意义的区域。为了更好地处理具有多个对象和遮挡的复杂场景,我们进一步提出了一种迭代期望 - 最大化算法来完善对象掩模。 RFP是针对神经辐射场(NERF)解决3D真实场景对象细分的第一个无监督方法之一,而无需任何监督,注释或其他提示,例如3D边界框以及对象类的先验知识。实验表明,RFP获得可行的分割结果,这些结果比以前的无监督图像/场景分割方法更准确,并且与现有的基于NERF的基于NERF的方法相媲美。分段对象表示可以实现单个3D对象编辑操作。
We present radiance field propagation (RFP), a novel approach to segmenting objects in 3D during reconstruction given only unlabeled multi-view images of a scene. RFP is derived from emerging neural radiance field-based techniques, which jointly encodes semantics with appearance and geometry. The core of our method is a novel propagation strategy for individual objects' radiance fields with a bidirectional photometric loss, enabling an unsupervised partitioning of a scene into salient or meaningful regions corresponding to different object instances. To better handle complex scenes with multiple objects and occlusions, we further propose an iterative expectation-maximization algorithm to refine object masks. RFP is one of the first unsupervised approach for tackling 3D real scene object segmentation for neural radiance field (NeRF) without any supervision, annotations, or other cues such as 3D bounding boxes and prior knowledge of object class. Experiments demonstrate that RFP achieves feasible segmentation results that are more accurate than previous unsupervised image/scene segmentation approaches, and are comparable to existing supervised NeRF-based methods. The segmented object representations enable individual 3D object editing operations.