论文标题

在非平凡的小除数和大型除数中,最多两次的秩序线性复发

Linear recurrences of order at most two in nontrivial small divisors and large divisors

论文作者

Chu, Hung Viet, Le, Kevin Huu, Miller, Steven J., Qiu, Yuan, Shen, Liyang

论文摘要

对于每个积极整数$ n $,定义$$ s'_n \ = \ {1 <d <d <\ sqrt {n}:d | n \} \ mbox {and} l'_n _n \ = \ \ \ \ \ \ \ \ \ \ \ \ \ {\ sqrt {\ sqrt {n}一组小除数$ \ {d \ le \ sqrt {n}:d | n \} $最多满足订单的线性复发。我们通过从考虑中排除了琐碎的除数$ 1 $,从而非微不足道地扩展了结果,从而大大提高了分析的复杂性。我们的第一个结果是所有正整数$ n $的特征,使得$ s'_n $最多满足订单的线性复发。此外,我们的第二个结果是所有正$ n $的特征,使得$ l'_n $最多满足订单的线性复发,从而扩展了最近的结果,其表征$ n $,$ l'_n $处于算术上。

For each positive integer $N$, define $$S'_N \ =\ \{1 < d < \sqrt{N}: d|N\}\mbox{ and }L'_N \ =\ \{\sqrt{N} < d < N : d|N\}.$$ Recently, Chentouf characterized all positive integers $N$ such that the set of small divisors $\{d\le \sqrt{N}: d|N\}$ satisfies a linear recurrence of order at most two. We nontrivially extend the result by excluding the trivial divisor $1$ from consideration, which dramatically increases the analysis complexity. Our first result characterizes all positive integers $N$ such that $S'_N$ satisfies a linear recurrence of order at most two. Moreover, our second result characterizes all positive $N$ such that $L'_N$ satisfies a linear recurrence of order at most two, thus extending considerably a recent result that characterizes $N$ with $L'_N$ being in an arithmetic progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源