论文标题
部分可观测时空混沌系统的无模型预测
Hyperbolic manifolds with a large number of systoles
论文作者
论文摘要
在本文中,对于任何$ n \ geq 4 $,我们构造了一系列紧凑的双曲线$ n $ -n $ -manifolds $ \ {m_i \} $,其系统数至少为$ \ mathrm {vol}(vol}(m_i)(m_i)^{1+ \ frac {1+\ frac {1}} {3n(n+1){3n+1} {$ 1)在维度3中,将界限提高到$ \ mathrm {vol}(m_i)^{\ frac {4} {3} {3}-ε} $。这些结果将Schmutz的先前工作以$ n = 2 $概括,而Dória-Murillo则以$ n = 3 $的价格概括为更高的尺寸。
In this article, for any $n\geq 4$ we construct a sequence of compact hyperbolic $n$-manifolds $\{M_i\}$ with number of systoles at least as $\mathrm{vol}(M_i)^{1+\frac{1}{3n(n+1)}-ε}$ for any $ε>0$. In dimension 3, the bound is improved to $\mathrm{vol}(M_i)^{\frac{4}{3}-ε}$. These results generalize previous work of Schmutz for $n=2$, and Dória-Murillo for $n=3$ to higher dimensions.