论文标题
部分可观测时空混沌系统的无模型预测
MTU-Net: Multi-level TransUNet for Space-based Infrared Tiny Ship Detection
论文作者
论文摘要
空间红外的小型船舶检测旨在将微小的船只与轨道轨道捕获的图像分开。由于图像覆盖面积极大(例如,数千平方公里),这些图像中的候选目标比空中基于天线和陆基成像设备观察到的目标要小得多,二聚体,更可变。现有的简短成像距离的红外数据集和目标检测方法不能很好地用于空间监视任务。为了解决这些问题,我们开发了一个空间红外的小型船舶检测数据集(即nudt-Sirst-Sea),其中有48个空间基红外图像和17598像素级的小型船体注释。每张图像覆盖约10000平方公里的面积,带有10000x10000像素。考虑到这些充满挑战的场景,考虑到这些小型船只的极端特征(例如,小,昏暗,可变的),我们在本文中提出了一个多级Transunet(MTU-NET)。具体而言,我们设计了视觉变压器(VIT)卷积神经网络(CNN)混合编码器来提取多层次特征。首先将局部特征图用几个卷积层提取,然后馈入多级特征提取模块(MVTM)以捕获长距离依赖性。我们进一步提出了一种拷贝性衡量量 - 帕斯特(CRRP)数据增强方法,以加速训练阶段,这有效地减轻了目标和背景之间样本不平衡问题的问题。此外,我们设计了一个焦点损失,以实现目标定位和形状描述。 NUDT-SIRST-SEA数据集的实验结果表明,就检测的概率,错误的警报率和联合交集的交集而言,我们的MTU-NET优于传统和现有的基于深度学习的SIRST方法。
Space-based infrared tiny ship detection aims at separating tiny ships from the images captured by earth orbiting satellites. Due to the extremely large image coverage area (e.g., thousands square kilometers), candidate targets in these images are much smaller, dimer, more changeable than those targets observed by aerial-based and land-based imaging devices. Existing short imaging distance-based infrared datasets and target detection methods cannot be well adopted to the space-based surveillance task. To address these problems, we develop a space-based infrared tiny ship detection dataset (namely, NUDT-SIRST-Sea) with 48 space-based infrared images and 17598 pixel-level tiny ship annotations. Each image covers about 10000 square kilometers of area with 10000X10000 pixels. Considering the extreme characteristics (e.g., small, dim, changeable) of those tiny ships in such challenging scenes, we propose a multi-level TransUNet (MTU-Net) in this paper. Specifically, we design a Vision Transformer (ViT) Convolutional Neural Network (CNN) hybrid encoder to extract multi-level features. Local feature maps are first extracted by several convolution layers and then fed into the multi-level feature extraction module (MVTM) to capture long-distance dependency. We further propose a copy-rotate-resize-paste (CRRP) data augmentation approach to accelerate the training phase, which effectively alleviates the issue of sample imbalance between targets and background. Besides, we design a FocalIoU loss to achieve both target localization and shape description. Experimental results on the NUDT-SIRST-Sea dataset show that our MTU-Net outperforms traditional and existing deep learning based SIRST methods in terms of probability of detection, false alarm rate and intersection over union.