论文标题

无线电 - 新闻建议中的差异指标来衡量规范多样性

RADio -- Rank-Aware Divergence Metrics to Measure Normative Diversity in News Recommendations

论文作者

Vrijenhoek, Sanne, Bénédict, Gabriel, Granada, Mateo Gutierrez, Odijk, Daan, de Rijke, Maarten

论文摘要

在传统的推荐系统文献中,多样性通常被视为相似性的相反,通常被定义为已确定的主题,类别或单词模型之间的距离。但是,这并不能表达社会科学对多样性的解释,这说明了新闻机构的规范和价值观,我们在这里将其称为规范性多样性。我们介绍了广播电台,这是一个多功能指标框架,旨在根据这些规范目标评估建议。广播引入了詹森·香农(JS)的差异。该组合解释了(i)用户减少倾向,即在列表下进一步观察项目以及(ii)与点估计相比的完整分配变化。我们评估了无线电在Microsoft新闻数据集和六种(神经)推荐算法的新闻建议中反映五个规范概念的能力,并在我们的元数据丰富管道的帮助下。我们发现无线电提供了有见地的估计,可以可能用于为新闻推荐系统设计提供信息。

In traditional recommender system literature, diversity is often seen as the opposite of similarity, and typically defined as the distance between identified topics, categories or word models. However, this is not expressive of the social science's interpretation of diversity, which accounts for a news organization's norms and values and which we here refer to as normative diversity. We introduce RADio, a versatile metrics framework to evaluate recommendations according to these normative goals. RADio introduces a rank-aware Jensen Shannon (JS) divergence. This combination accounts for (i) a user's decreasing propensity to observe items further down a list and (ii) full distributional shifts as opposed to point estimates. We evaluate RADio's ability to reflect five normative concepts in news recommendations on the Microsoft News Dataset and six (neural) recommendation algorithms, with the help of our metadata enrichment pipeline. We find that RADio provides insightful estimates that can potentially be used to inform news recommender system design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源