论文标题

图形神经网络用于多机器人主动信息获取

Graph Neural Networks for Multi-Robot Active Information Acquisition

论文作者

Tzes, Mariliza, Bousias, Nikolaos, Chatzipantazis, Evangelos, Pappas, George J.

论文摘要

本文解决了多机器人主动信息采集(AIA)问题,其中一组移动机器人通过基础图进行通信,估计了一种表达感兴趣现象的隐藏状态。可以在此框架中表达诸如目标跟踪,覆盖范围和大满贯之类的应用程序。但是,现有的方法要么是不可伸缩的,因此无法处理动态现象,或者对通信图中的变化不健全。为了应对这些缺点,我们提出了一个信息感知的图形块网络(i-gbnet),即图形神经网络的AIA适应,该网络通过图表来汇总信息,并以分布式方式提供顺序决定。通过基于集中抽样的专家求解器通过模仿学习训练的I-GBNET表现出置换量比和时间不变性,同时利用了以前看不见的环境和机器人配置的出色可伸缩性,鲁棒性和概括性。与训练中看到的隐藏状态和更复杂环境的显着更大图和维度的实验相比,在训练中验证了所提出的体系结构的特性及其在应用定位和动态目标的应用中的功效。

This paper addresses the Multi-Robot Active Information Acquisition (AIA) problem, where a team of mobile robots, communicating through an underlying graph, estimates a hidden state expressing a phenomenon of interest. Applications like target tracking, coverage and SLAM can be expressed in this framework. Existing approaches, though, are either not scalable, unable to handle dynamic phenomena or not robust to changes in the communication graph. To counter these shortcomings, we propose an Information-aware Graph Block Network (I-GBNet), an AIA adaptation of Graph Neural Networks, that aggregates information over the graph representation and provides sequential-decision making in a distributed manner. The I-GBNet, trained via imitation learning with a centralized sampling-based expert solver, exhibits permutation equivariance and time invariance, while harnessing the superior scalability, robustness and generalizability to previously unseen environments and robot configurations. Experiments on significantly larger graphs and dimensionality of the hidden state and more complex environments than those seen in training validate the properties of the proposed architecture and its efficacy in the application of localization and tracking of dynamic targets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源