论文标题

通过多个纵向数据流的融合来跟踪人们对Covid-1 19的状态和行为

Tracking the State and Behavior of People in Response to COVID-1 19 Through the Fusion of Multiple Longitudinal Data Streams

论文作者

Bouzaghrane, Mohamed Amine, Obeid, Hassan, Hayes, Drake, Chen, Minnie, Li, Meiqing, Parker, Madeleine, Rodríguez, Daniel A., Chatman, Daniel G., Frick, Karen Trapenberg, Sengupta, Raja, Walker, Joan

论文摘要

COVID-19大流行的不断变化的性质强调了全面考虑其影响并考虑随着时间的变化的重要性。大多数COVID相关的研究都解决了狭义的研究问题,因此在解决大流行的相互关联影响所产生的复杂性方面受到限制。这样的研究通常仅使用1)主动收集的数据,例如调查,或2)被动收集的数据。虽然一些研究利用了积极和被动地收集的数据,但只有一项研究纵向收集。在这里,我们描述了2020年8月至2021年7月期间收集的美国居民的活跃和被动数据的丰富小组数据集。主动数据包括重复测量旅行行为,遵守COVID-19的授权,身体健康,经济健康,疫苗接种状况和其他因素。被动收集的数据包括研究参与者访问的所有位置,从智能手机GPS数据中获取。在整个研究期间,我们还密切跟踪了跨居民县的共同制定政策。这样的数据集允许回答重要的研究问题;例如,确定对地方政府对COVID-19限制的异质行为反应的基础因素。有关此类反应的更好信息对于我们了解这种和未来大流行的社会和经济影响的能力至关重要。这些数据基础架构的开发还可以帮助研究人员探索行为科学领域的新领域。本文解释了这种方法如何填补COVID-19相关数据收集中的空白;描述研究设计和数据收集程序;提出研究参与者的关键人口特征;并显示融合不同的数据流如何帮助发现行为洞察力。

The changing nature of the COVID-19 pandemic has highlighted the importance of comprehensively considering its impacts and considering changes over time. Most COVID-19 related research addresses narrowly focused research questions and is therefore limited in addressing the complexities created by the interrelated impacts of the pandemic. Such research generally makes use of only one of either 1) actively collected data such as surveys, or 2) passively collected data. While a few studies make use of both actively and passively collected data, only one other study collects it longitudinally. Here we describe a rich panel dataset of active and passive data from U.S. residents collected between August 2020 and July 2021. Active data includes a repeated survey measuring travel behavior, compliance with COVID-19 mandates, physical health, economic well-being, vaccination status, and other factors. Passively collected data consists of all locations visited by study participants, taken from smartphone GPS data. We also closely tracked COVID-19 policies across counties of residence throughout the study period. Such a dataset allows important research questions to be answered; for example, to determine the factors underlying the heterogeneous behavioral responses to COVID-19 restrictions imposed by local governments. Better information about such responses is critical to our ability to understand the societal and economic impacts of this and future pandemics. The development of this data infrastructure can also help researchers explore new frontiers in behavioral science. The article explains how this approach fills gaps in COVID-19 related data collection; describes the study design and data collection procedures; presents key demographic characteristics of study participants; and shows how fusing different data streams helps uncover behavioral insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源