论文标题

扭曲的clopoid l^p-operator代数的刚度

Rigidity of twisted groupoid L^p-operator algebras

论文作者

Hetland, Einar V., Ortega, Eduard

论文摘要

在本文中,我们将研究减少的扭曲组和groupoid $ l^p $ operator代数的同构问题。对于本地紧凑的组$ g $和连续的2个循环$σ$,我们将定义减少的$σ$ twisted $ l^p $ - 操作员algebra $f_λ^p(g,σ)$。我们将证明,如果$ p \ neq2 $,那么两个这样的代数是同构的,并且仅当这些组在拓扑上是同构的,并且连续的2个晶体是共同的。对于twist $ \ MATHCAL {E} $上的étalegroupoid $ \ Mathcal {G} $,我们定义了减少的扭曲的twisted groupoid $ l^p $ - operator algebra $ f^p_λ(\ Mathcal {g}; \ nathcal {e})$。在本文的主要结果中,我们表明,对于$ p \ neq 2 $,如果topogologids在拓扑上是主要的,Hausdorff,étale,并且具有紧凑的单位空间,则仅在且只有同粒子是同义的,并且当群体素质是同等的,并且Twists是同等的,并且Twists是同等的,并且曲折是同构的,并且曲折是同等的,并且适当地同符。

In this paper we will study the isomorphism problem for the reduced twisted group and groupoid $L^p$-operator algebras. For a locally compact group $G$ and a continuous 2-cocycle $σ$ we will define the reduced $σ$-twisted $L^p$-operator algebra $F_λ^p(G,σ)$. We will show that if $p\neq2$, then two such algebras are isometrically isomorphic if and only if the groups are topologically isomorphic and the continuous 2-cocyles are cohomologous. For a twist $\mathcal{E}$ over an étale groupoid $\mathcal{G}$, we define the reduced twisted groupoid $L^p$-operator algebra $F^p_λ(\mathcal{G};\mathcal{E})$. In the main result of this paper, we show that for $p\neq 2$ if the groupoids are topologically principal, Hausdorff, étale and have a compact unit space, then two such algebras are isometrically isomorphic if and only if the groupoids are isomorphic and the twists are properly isomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源