论文标题
可扩展的高斯工艺高参数优化通过覆盖正则化
Scalable Gaussian Process Hyperparameter Optimization via Coverage Regularization
论文作者
论文摘要
高斯工艺(GPS)是贝叶斯非参数模型,由于其准确性和本地不确定性定量(UQ),因此在各种应用中流行。调整GP超标剂对于确保预测准确性和不确定性的有效性至关重要。独特地估计多个超参数,例如Matern内核也可能是一个重大挑战。此外,大规模数据集中的培训GPS是一个高度活跃的研究领域:传统的最大似然高参数训练需要二次记忆以形成协方差矩阵并具有立方训练的复杂性。为了解决可扩展的超参数调谐问题,我们提出了一种新型算法,该算法估计了Matern内核中的平滑度和长度尺度参数,以提高所得预测不确定性的鲁棒性。使用与超参数估计算法MUYGPS提供的计算框架中的相似预测算法相似的新型损失函数,我们在数值实验中证明了高度可扩展性,而在保持高度可扩展性的同时,我们实现了改进的UQ。
Gaussian processes (GPs) are Bayesian non-parametric models popular in a variety of applications due to their accuracy and native uncertainty quantification (UQ). Tuning GP hyperparameters is critical to ensure the validity of prediction accuracy and uncertainty; uniquely estimating multiple hyperparameters in, e.g. the Matern kernel can also be a significant challenge. Moreover, training GPs on large-scale datasets is a highly active area of research: traditional maximum likelihood hyperparameter training requires quadratic memory to form the covariance matrix and has cubic training complexity. To address the scalable hyperparameter tuning problem, we present a novel algorithm which estimates the smoothness and length-scale parameters in the Matern kernel in order to improve robustness of the resulting prediction uncertainties. Using novel loss functions similar to those in conformal prediction algorithms in the computational framework provided by the hyperparameter estimation algorithm MuyGPs, we achieve improved UQ over leave-one-out likelihood maximization while maintaining a high degree of scalability as demonstrated in numerical experiments.