论文标题
vtoonify:可控的高分辨率肖像视频风格转移
VToonify: Controllable High-Resolution Portrait Video Style Transfer
论文作者
论文摘要
生成高质量的艺术肖像视频是计算机图形和视野中的重要且理想的任务。尽管已经提出了一系列成功的肖像图像图像模型模型,但这些面向图像的方法在应用于视频(例如固定框架尺寸,面部对齐,缺失的非种族细节和时间不一致的要求)时具有明显的限制。在这项工作中,我们通过引入一个新颖的Vtoonify框架来研究具有挑战性的可控高分辨率肖像视频风格转移。具体而言,Vtoonify利用了Stylegan的中高分辨率层,以基于编码器提取的多尺度内容功能来渲染高质量的艺术肖像,以更好地保留框架细节。由此产生的完全卷积架构接受可变大小的视频中的非对齐面孔作为输入,从而有助于完整的面部区域,并具有自然动作的输出。我们的框架与现有的基于Stylegan的图像TOONIFIENT模型兼容,以将其扩展到视频化,并继承这些模型的吸引力,以柔性风格控制色彩和强度。这项工作分别为基于收藏和基于典范的肖像视频风格转移而建立在Toonify和Dualstylegan的基于Toonify和Dualstylegan的Vtoonify实例化。广泛的实验结果证明了我们提出的Vtoonify框架对现有方法在生成具有灵活风格控件的高质量和临时艺术肖像视频方面的有效性。
Generating high-quality artistic portrait videos is an important and desirable task in computer graphics and vision. Although a series of successful portrait image toonification models built upon the powerful StyleGAN have been proposed, these image-oriented methods have obvious limitations when applied to videos, such as the fixed frame size, the requirement of face alignment, missing non-facial details and temporal inconsistency. In this work, we investigate the challenging controllable high-resolution portrait video style transfer by introducing a novel VToonify framework. Specifically, VToonify leverages the mid- and high-resolution layers of StyleGAN to render high-quality artistic portraits based on the multi-scale content features extracted by an encoder to better preserve the frame details. The resulting fully convolutional architecture accepts non-aligned faces in videos of variable size as input, contributing to complete face regions with natural motions in the output. Our framework is compatible with existing StyleGAN-based image toonification models to extend them to video toonification, and inherits appealing features of these models for flexible style control on color and intensity. This work presents two instantiations of VToonify built upon Toonify and DualStyleGAN for collection-based and exemplar-based portrait video style transfer, respectively. Extensive experimental results demonstrate the effectiveness of our proposed VToonify framework over existing methods in generating high-quality and temporally-coherent artistic portrait videos with flexible style controls.