论文标题

带有随机掌握机器人的运动计划

Motion Planning for a Climbing Robot with Stochastic Grasps

论文作者

Newdick, Stephanie, Ongole, Nitin, Chen, Tony G., Schmerling, Edward, Cutkosky, Mark R., Pavone, Marco

论文摘要

多限制攀岩机器人的运动计划必须考虑机器人的姿势,联合扭矩,以及它如何使用接触力与环境相互作用。本文着重于使用非传统运动来探索不可预测的环境(例如火星洞穴)的机器人运动计划。我们的机器人概念Reachbot使用可扩展和可伸缩的动臂作为肢体,在攀爬时实现了一个大型可伸缩度工作区。每个可扩展的动臂都由用于抓住岩石表面的微生物抓地力限制。 Reachbot利用其大型工作空间在障碍物,裂缝和挑战地形上围绕障碍物导航。我们的计划方法必须具有多功能性,以适应可变的地形特征和鲁棒性,以减轻用刺抓握随机性质的风险。在本文中,我们引入了一种图形遍历算法,以根据适用于握把的可用地形特征选择一个离散的grasps序列。该离散的计划与一个解耦运动计划者相辅相成,该计划使用基于抽样的计划和顺序凸面编程的组合来考虑身体运动和最终效应器运动的交替阶段,以优化各个阶段。我们使用运动规划师在模拟的2D洞穴环境中计划轨迹,至少95%的成功概率,并在基线轨迹上表现出改善的鲁棒性。最后,我们通过对2D平面原型进行实验来验证运动计划算法。

Motion planning for a multi-limbed climbing robot must consider the robot's posture, joint torques, and how it uses contact forces to interact with its environment. This paper focuses on motion planning for a robot that uses nontraditional locomotion to explore unpredictable environments such as martian caves. Our robotic concept, ReachBot, uses extendable and retractable booms as limbs to achieve a large reachable workspace while climbing. Each extendable boom is capped by a microspine gripper designed for grasping rocky surfaces. ReachBot leverages its large workspace to navigate around obstacles, over crevasses, and through challenging terrain. Our planning approach must be versatile to accommodate variable terrain features and robust to mitigate risks from the stochastic nature of grasping with spines. In this paper, we introduce a graph traversal algorithm to select a discrete sequence of grasps based on available terrain features suitable for grasping. This discrete plan is complemented by a decoupled motion planner that considers the alternating phases of body movement and end-effector movement, using a combination of sampling-based planning and sequential convex programming to optimize individual phases. We use our motion planner to plan a trajectory across a simulated 2D cave environment with at least 95% probability of success and demonstrate improved robustness over a baseline trajectory. Finally, we verify our motion planning algorithm through experimentation on a 2D planar prototype.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源