论文标题
在线分布在线非凸优化,并具有综合遗憾
Distributed Online Non-convex Optimization with Composite Regret
论文作者
论文摘要
遗憾已被广泛用作评估分布式多代理系统在线优化算法的性能的首选指标。但是,与代理相关的数据/模型变化可以显着影响决策,并且需要在代理之间达成共识。此外,大多数现有的作品都集中在开发(强烈或不断地)凸出的方法上,对于一般非凸面损失的分布式在线优化中的遗憾界限,几乎没有得到很少的结果。为了解决这两个问题,我们提出了一种新型的综合遗憾,并使用新的基于网络的基于遗憾的度量标准来评估分布式在线优化算法。我们具体地定义了复合遗憾的静态和动态形式。通过利用我们的综合遗憾的动态形式,我们为伪convex损失开发了一种基于共识的在线归一化梯度(CONGD)方法,事实证明,它显示了与优化器路径变化的规律性术语有关的均方根行为。对于一般的非凸面损失,我们首先阐明了基于最近的进步的分布式在线非convex学习的遗憾,以至于没有确定性算法可以实现sublinear的遗憾。然后,根据离线优化的Oracle,我们以复合遗憾(Dinoco)开发了分布式的在线非凸优化(Dinoco),而无需进入梯度。迪诺科(Dinoco)被证明可以实现统一的遗憾。据我们所知,这是对一般分布在线非convex学习的第一个遗憾。
Regret has been widely adopted as the metric of choice for evaluating the performance of online optimization algorithms for distributed, multi-agent systems. However, data/model variations associated with agents can significantly impact decisions and requires consensus among agents. Moreover, most existing works have focused on developing approaches for (either strongly or non-strongly) convex losses, and very few results have been obtained regarding regret bounds in distributed online optimization for general non-convex losses. To address these two issues, we propose a novel composite regret with a new network regret-based metric to evaluate distributed online optimization algorithms. We concretely define static and dynamic forms of the composite regret. By leveraging the dynamic form of our composite regret, we develop a consensus-based online normalized gradient (CONGD) approach for pseudo-convex losses, and it provably shows a sublinear behavior relating to a regularity term for the path variation of the optimizer. For general non-convex losses, we first shed light on the regret for the setting of distributed online non-convex learning based on recent advances such that no deterministic algorithm can achieve the sublinear regret. We then develop the distributed online non-convex optimization with composite regret (DINOCO) without access to the gradients, depending on an offline optimization oracle. DINOCO is shown to achieve sublinear regret; to our knowledge, this is the first regret bound for general distributed online non-convex learning.