论文标题

可转移的深度学习潜力揭示了LIF-NAF-ZRF4熔化盐中的中等范围排序效应

Transferable Deep Learning Potential Reveals Intermediate-Range Ordering Effects in LiF-NaF-ZrF4 Molten Salt

论文作者

Chahal, Rajni, Roy, Santanu, Brehm, Martin, Banerjee, Shubhojit, Bryantsev, Vyacheslav, Lam, Stephen T.

论文摘要

由于所需的热物理和运输特性,LIF-NAF-ZRF4多组分熔融盐是高级清洁能源系统的有希望的候选冷却剂。但是,由于模拟和解释高度无序,中间层的结构的实验光谱的局限性,几乎无法量化能够使这些特性的复杂结构及其对组成的依赖。具体而言,过去使用的尺寸有限的AB-Initio仿真和准确性有限的经典模型无法捕获在液态盐的扩展异质结构中发现的广泛波动的基序。这极大地抑制了我们设计量身定制的构图和材料的能力。在这里,使用准确,高效且可转移的机器学习势用于预测远远超出LIF-NAF-ZRF4第一个协调外壳的结构。证明只有29%和37%ZRF4的共晶组成训练的神经网络可准确地模拟具有截然不同的配位化学化学的广泛组成(11至40%ZRF4),同时显示出与理论和实验性Raman Spectra的显着一致性。理论的拉曼计算进一步发现了〜250 cm-1的弯曲带的先前看不见的移位和扁平化,这验证了模拟的延长范围结构,如在Zrf4含量高于29%的组成中所观察到的。在这种情况下,基于机器学习的模拟能够访问较大的时间和长度尺度(超过17Å)对于准确预测结构和离子扩散性至关重要。

LiF-NaF-ZrF4 multicomponent molten salts are promising candidate coolants for advanced clean energy systems owing to their desirable thermophysical and transport properties. However, the complex structures enabling these properties, and their dependence on composition, is scarcely quantified due to limitations in simulating and interpreting experimental spectra of highly disordered, intermediate-ranged structures. Specifically, size-limited ab-initio simulation and accuracy-limited classical models used in the past, are unable to capture a wide range of fluctuating motifs found in the extended heterogeneous structures of liquid salt. This greatly inhibits our ability to design tailored compositions and materials. Here, accurate, efficient and transferable machine learning potentials are used to predict structures far beyond the first coordination shell in LiF-NaF-ZrF4. Neural networks trained at only eutectic compositions with 29% and 37% ZrF4 are shown to accurately simulate a wide range of compositions (11 to 40% ZrF4) with dramatically different coordination chemistries, while showing a remarkable agreement with theoretical and experimental Raman spectra. The theoretical Raman calculations further uncovered the previously unseen shift and flattening of bending band at ~250 cm-1 which validated the simulated extended-range structures as observed in compositions with higher than 29% ZrF4 content. In such cases, machine learning-based simulations capable of accessing larger time- and length-scales (beyond 17 Å) were critical for accurately predicting both structure and ionic diffusivities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源