论文标题

关于解决参数之间的冲突

On resolving conflicts between arguments

论文作者

Roos, Nico

论文摘要

参数系统基于这样的想法,即一个人可以为命题构建参数。即,结构化的理由证明了对命题的信念。使用不避免的规则,在所有情况下,参数都不必有效,因此,可以为命题及其否定构建一个论点。当争论支持冲突的命题时,必须击败其中一个论点,这提出了\ emph {(sub-)论点可能会被击败}的问题? 在法律论证中,元符号通过考虑冲突中涉及的每个论点的最后一个不辩护的规则来确定有效的论点。由于使用其最后一个规则评估参数更容易,因此\ emph {可以通过仅考虑所涉及的参数的最后不诚信规则来解决冲突}? 我们提出了一个新的参数系统,其中构建了\ emph {bustercutting-arguments},而不是在构建失败规则的情况下\ emph {bustercutting-arguments}。该系统允许我们(\ textit {i})仅使用不一致的参数的最后规则来解决冲突(驳斥参数的概括)(\ textit {ii}),以确定一组有效的(不屈服的)参数,使用基于jtms的algorithm(\ textiT)(\ textit)(\ textit}(iii ii ii ii ii ii ii ii ii ii ii ii), (\ textIt {iv})证明了clost属性,例如\ emph {cumulativity}。我们还提出了一个参数系统的扩展,该参数系统可以启用\ emph {通过案例推理}。

Argument systems are based on the idea that one can construct arguments for propositions; i.e., structured reasons justifying the belief in a proposition. Using defeasible rules, arguments need not be valid in all circumstances, therefore, it might be possible to construct an argument for a proposition as well as its negation. When arguments support conflicting propositions, one of the arguments must be defeated, which raises the question of \emph{which (sub-)arguments can be subject to defeat}? In legal argumentation, meta-rules determine the valid arguments by considering the last defeasible rule of each argument involved in a conflict. Since it is easier to evaluate arguments using their last rules, \emph{can a conflict be resolved by considering only the last defeasible rules of the arguments involved}? We propose a new argument system where, instead of deriving a defeat relation between arguments, \emph{undercutting-arguments} for the defeat of defeasible rules are constructed. This system allows us, (\textit{i}) to resolve conflicts (a generalization of rebutting arguments) using only the last rules of the arguments for inconsistencies, (\textit{ii}) to determine a set of valid (undefeated) arguments in linear time using an algorithm based on a JTMS, (\textit{iii}) to establish a relation with Default Logic, and (\textit{iv}) to prove closure properties such as \emph{cumulativity}. We also propose an extension of the argument system that enables \emph{reasoning by cases}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源