论文标题
wte $ _ {2} $单层的滑行对称性保护螺旋边缘状态的理论
Theory of Glide Symmetry Protected Helical Edge States in WTe$_{2}$ Monolayer
论文作者
论文摘要
量子自旋大厅(QSH)材料中的螺旋边缘状态是拓扑问题设计和工程的中央组成部分。尽管它们的主要拓扑保护针对弹性反向散射,但操作稳定性水平取决于流动参数,例如在“反倒”状态,温度,无序和晶体取向中给定半导体系统的带隙。我们从理论上研究了QSH边缘状态的电子和传输属性,以大间隙1-T'WTE $ _ {2} $单层。我们探讨边缘终止,混乱,温度和相互作用对实验可寻址的边缘状态可观察物的影响,例如状态和电导的局部密度。我们表明,由于较小的边缘状态衰减长度和与Glide Symmetry允许的较大直接间隙相关的额外保护,电导量化也可以令人惊讶地保持稳定性。从依赖温度依赖性抗性的模拟中,我们发现中度疾病通过定位散装状态增强了电导的稳定性。我们将边缘状态速度和Luttinger液体参数评估为化学势的功能,在具有超洁净和明确的边缘的样品中发现了线性螺旋螺旋液液体以外的物理学的前景。
Helical edge states in quantum spin Hall (QSH) materials are central building blocks of topological matter design and engineering. Despite their principal topological protection against elastic backscattering, the level of operational stability depends on manifold parameters such as the band gap of the given semiconductor system in the 'inverted' regime, temperature, disorder, and crystal orientation. We theoretically investigate electronic and transport properties of QSH edge states in large gap 1-T' WTe$_{2}$ monolayers. We explore the impact of edge termination, disorder, temperature, and interactions on experimentally addressable edge state observables, such as local density of states and conductance. We show that conductance quantization can remain surprisingly robust even for heavily disordered samples because of an anomalously small edge state decay length and additional protection related to the large direct gap allowed by glide symmetry. From the simulation of temperature-dependent resistance, we find that moderate disorder enhances the stability of conductance by localizing bulk states. We evaluate the edge state velocity and Luttinger liquid parameter as functions of the chemical potential, finding prospects for physics beyond linear helical Luttinger liquids in samples with ultra-clean and well-defined edges.