论文标题
SMIX:非参数混合物回归聚类的新型有效算法
SMIXS: Novel efficient algorithm for non-parametric mixture regression-based clustering
论文作者
论文摘要
我们研究了一种基于纵向数据分析的新型非参数聚类算法。该算法将天然立方花纹与高斯混合模型(GMM)结合在一起,可以产生光滑的群集,方法很好地描述了基础数据。但是,算法中存在一些缺点:参数估计过程中的高计算复杂性和数值不稳定的方差估计器。因此,为了进一步提高该方法的可用性,我们合并了降低其计算复杂性的方法,我们开发了一种新的,更稳定的方差估计器,并开发了一种新的平滑参数估计过程。我们表明,就聚类和回归性能而言,开发的算法SMIX在合成数据集上的性能优于GMM。我们演示了计算加速度的影响,我们在新框架中正式证明了计算加速。最后,我们通过使用SMIX来群垂直大气测量来确定不同的天气状态,进行案例研究。
We investigate a novel non-parametric regression-based clustering algorithm for longitudinal data analysis. Combining natural cubic splines with Gaussian mixture models (GMM), the algorithm can produce smooth cluster means that describe the underlying data well. However, there are some shortcomings in the algorithm: high computational complexity in the parameter estimation procedure and a numerically unstable variance estimator. Therefore, to further increase the usability of the method, we incorporated approaches to reduce its computational complexity, we developed a new, more stable variance estimator, and we developed a new smoothing parameter estimation procedure. We show that the developed algorithm, SMIXS, performs better than GMM on a synthetic dataset in terms of clustering and regression performance. We demonstrate the impact of the computational speed-ups, which we formally prove in the new framework. Finally, we perform a case study by using SMIXS to cluster vertical atmospheric measurements to determine different weather regimes.