论文标题

使用神经辐射场的主动机器人3D重建的不确定性指导政策

Uncertainty Guided Policy for Active Robotic 3D Reconstruction using Neural Radiance Fields

论文作者

Lee, Soomin, Chen, Le, Wang, Jiahao, Liniger, Alexander, Kumar, Suryansh, Yu, Fisher

论文摘要

在本文中,我们解决了物体的主动机器人3D重建问题。特别是,我们研究了带有武器摄像机的移动机器人如何选择有利数量的视图来有效地恢复对象的3D形状。与现有的解决此问题的解决方案相反,我们利用了流行的基于神经辐射场的对象表示,该对象表示最近在各种计算机视觉任务上显示出令人印象深刻的结果。但是,直接推理使用这种表示形式的显式3D几何细节并不是直接推理的,这使得对密度3D重建具有挑战性的下一最佳视图选择问题。本文介绍了一个基于射线的容量不确定性估计器,该估计器计算沿对象隐式神经表示的每个光线沿每个射线的颜色样品的重量分布的熵。我们表明,鉴于提出的估计量有新的观点,可以推断基础3D几何形状的不确定性。然后,我们提出了一个由基于射线的体积不确定性在基于神经辐射字段的表示中指导的次数最佳选择策略。对合成和现实世界数据的令人鼓舞的实验结果表明,本文提出的方法可以使新的研究方向在机器人视觉应用中使用隐式3D对象表示,以将我们的方法与依赖于显式3D几何建模的现有方法区分开来。

In this paper, we tackle the problem of active robotic 3D reconstruction of an object. In particular, we study how a mobile robot with an arm-held camera can select a favorable number of views to recover an object's 3D shape efficiently. Contrary to the existing solution to this problem, we leverage the popular neural radiance fields-based object representation, which has recently shown impressive results for various computer vision tasks. However, it is not straightforward to directly reason about an object's explicit 3D geometric details using such a representation, making the next-best-view selection problem for dense 3D reconstruction challenging. This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation. We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator. We then present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations. Encouraging experimental results on synthetic and real-world data suggest that the approach presented in this paper can enable a new research direction of using an implicit 3D object representation for the next-best-view problem in robot vision applications, distinguishing our approach from the existing approaches that rely on explicit 3D geometric modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源