论文标题
分子范德华在腔量子电动力学中的流体
Molecular van der Waals fluids in cavity quantum electrodynamics
论文作者
论文摘要
分子间的范德华相互作用是化学和物理现象的核心,范围从生物分子结合到软性物质相变。但是,目前有非常有限的操纵范德华相互作用的方法。在这项工作中,我们证明了强烈的光耦合可用于调整范德华的相互作用,从而控制许多分子系统的热力学特性。我们的分析揭示了范德华分子的方向依赖性单分子能和相互作用能(例如,h $ _ {2} $)。例如,我们发现分子间相互作用取决于分子$ r $作为$ r^{ - 3} $和$ r^{0} $之间的距离。此外,我们采用非扰动\ textit {ab intio}腔量子电动力学计算来开发基于机器学习的光腔内分子的相互作用潜力。通过模拟系统的范围从$ 12 $ h $ _2 $到$ 144 $ h $ _2 $分子,我们证明了强烈的光耦合可以调整分子流体的结构和热力学特性。特别是,由于空腔修饰的相互作用,我们观察到不同程度的定向顺序,并解释了量子核效应,光 - 偶联强度,腔模式的数量,分子各向异性和系统大小如何影响定向阶的程度。这些模拟和分析表明,强烈的光 - 耦合以及开放的新路径可以控制分子簇的性质。
Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. However, there are currently very limited approaches to manipulate van der Waals interactions. In this work, we demonstrate that strong light-matter coupling can be used to tune van der Waals interactions, and, thus, control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules (for example, H$_{2}$). For example, we find intermolecular interactions that depend on the distance between the molecules $R$ as $R^{-3}$ and $R^{0}$. Moreover, we employ non-perturbative \textit{ab initio} cavity quantum electrodynamics calculations to develop machine learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from $12$ H$_2$ to $144$ H$_2$ molecules, we demonstrate that strong light-matter coupling can tune the structural and thermodynamic properties of molecular fluids. In particular, we observe varying degrees of orientational order as a consequence of cavity-modified interactions, and we explain how quantum nuclear effects, light-matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order. These simulations and analyses demonstrate both local and collective effects induced by strong light-matter coupling and open new paths for controlling the properties of molecular clusters.